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Introduction

La découverte de connaissances dans les bases de données apparait & ’heure actuelle comme I'une des
thématiques les plus dynamiques en Intelligence Artificielle (TA). Elle est mise en ceuvre par un processus
complexe dont le but est d’extraire, & partir d’'un entrepot de données, de I'information qui a un sens
pour un utilisateur humain. Les connaissances découvertes doivent avoir un haut niveau d’abstraction
par rapport aux données initiales. En effet, les données élémentaires, hétérogénes et volumineuses — en
un mot incompréhensibles, sont transformées en une représentation plus compacte (par exemple, une
approximation, un modéle expliquant les données) et/ou plus utile (un modéle cohérent des données,
un modeéle prédictif, ...). Au cceur de ce processus, l’étape d’extraction proprement dite, est appelée
fouille de données (ang., Data Mining). La contribution apportée par tout processus de fouille de données
est la possibilité d’expliquer les connaissances extraites. Il existe de multiples facons de formaliser ces
connaissances, certaines pouvant étre traduites sous forme de régles lisibles alors que d’autres sont de
type « boite noire ». Nous avons choisi de travailler sur des techniques permettant d’engendrer des
connaissances compréhensibles, sous la forme de régles s’appliquant sur les données et renvoyant une
expertise de plus haut niveau (classe, statistiques sur I’échantillon, ...). Nous nommons ce processus
d’extraction découverte de régles de classification.

La fouille de données, appliquée & des domaines trés divers, vise particuliérement les trés grandes
bases de données, & 'image de celles rencontrées dans le monde réel, comme dans les télécommunications,
I’astronomie, la thérapeutique ou le e-commerce. Le cadre de travail dans lequel s’inscrit ce mémoire est la
télédétection dont les applications sont la classification, la cartographie, ’évaluation et la reconnaissance
des caractéristiques du terrain, la gestion d’environnement naturel, ’aménagement de territoire urbain,
etc. Dans ce domaine, les chercheurs sont confrontés & des images de trés grande taille (par exemple,
12000 x 8000 pixels pour le capteur ROSIS), bruitées (notamment par les conditions atmosphériques
ou par celles de la prise de vue) et complexes car ce sont des données réelles. Ces données sont aussi
de plus en plus fastidieuses & manipuler puisque leur quantité, leur complexité et leur taille suivent
I’amélioration constante de la technologie de prise de vue et de la sensibilité des capteurs, que ce soient
ceux de satellites ou d’avions volant & haute altitude. L’apprentissage et ’extraction automatique de
connaissances se révélent adaptés a ce domaine compte tenu de leurs innombrables applications et des
difficultés présentées par les données réelles.

L’approche évolutionnaire

Les difficultés évoquées suggérent I’emploi d’algorithmes évolués, déja utilisés dans d’autres domaines
qui engendrent des masses de données complexes, comme le commerce, la production industrielle ou
Iingénierie. Les algorithmes évolutionnaires sont connus pour étre robustes au bruit et peu soucieux du
nombre de données, donc & méme de traiter un probléme de classification d’imagerie satellitaire. Un
bref point de terminologie doit étre formulé ici. Dans notre cas, un classifieur est une régle issue du
processus d’extraction de connaissance considéré et une classification est le résultat de son application.
Les algorithmes évolutionnaires comme les systémes de classifieurs [Holland, 1975; Wilson, 1995] sont
entiérement dédiés a la découverte de classifieurs. Les systémes de classifieurs (ang., Learning Classifier
Systems ou LCS) engendrent des populations de régles de classification simples, lisibles et généralisantes
(par la présence de caractéres joker ou d’intervalles de confiance permettant de modéliser de nombreux
cas similaires en une seule régle). Les régles apprises constituent une base de connaissances qui peut étre



2 INTRODUCTION

appliquée sur une autre partie de I’image, voire une nouvelle image, en garantissant un taux correct de
vrais positifs et vrais négatifs pour la classification de nouveaux exemples. Cette approche n’a cependant
pas été explorée dans le domaine de la télédétection. A notre connaissance, aucun travail n’a été publié
dans les principales conférences relatives a ce sujet (GECCO?! et IWLCS?). En réalit¢, la recherche dans ce
domaine est en plein essor, comparée & celle gouvernée par les algorithmes génétiques. Peu d’applications
en télédétection ont pu a ce jour étre conjuguées avec les LCS, malgré les nombreux travaux théoriques
qui leur ont été consacrés, dont certains sont récents [Wilson, 2000b; Butz et Wilson, 2002; Studley et
Bull, 2005].

Pour 'apprentissage de nos classifieurs, nous disposons de connaissances préalables assez abondantes,
trés bien renseignées et documentées par les experts de terrain. Pour les exploiter, nous nous sommes
tournés vers une approche d’apprentissage supervisée. Dans ce contexte, la découverte de classes pré-
cises et exactes compte parmi les objectifs essentiels que se fixent les thématiciens. Pour un algorithme,
répondre & cette requéte est une mission relativement ardue.

En effet, pour extraire les concepts thématiques étudiés par 'expert, nous disposons souvent de
sources d’information nombreuses (images satellitaires, images a haute altitude, mesures aérostatiques,
mesures laser, validation terrain, validations spectrométriques, informations expertes informelles), de
différentes natures et peu cohérentes entre elles. Une part de notre étude est ainsi consacrée a la mise en
place d’un formalisme de représentation de la connaissance adapté & 'extraction de ces concepts. Cette
problématique est au coeur d’un autre projet de recherche plus vaste, initié par ’équipe Apprentissage et
Fouille de Données du LSIIT dans le cadre de I’Action Concertée Incitative (ACI) Masse de données : le
projet FoDoMust®. L’objectif de ce projet est de proposer une stratégie permettant ’utilisation conjointe
de différentes sources d’images en vue d’en extraire des objets qui dépassent le niveau du pixel, en utilisant
notamment des connaissances de haut niveau comme des ontologies.

Nous sommes aussi en étroite collaboration avec le laboratoire Image et Ville de Strasbourg [LIV,
2005] qui nous a fourni des documents de travail sur Strasbourg, et avec le projet européen TIDE* [TIDE,
2005; Marani et al., 2003; Marani et al., 2004] pour des images de Venise. Dans ce projet, nous avons
participé & un groupe de travail (Work Package 6), visant & développer et valider des modeéles dynamiques
et complets de systémes marécageux incorporant & la fois des processus écologiques et physiques. Ce
projet européen, réunissant des équipes italiennes, anglaises, allemandes et francaises, a nourri la majorité
de notre base de données, par des images multispectrales et hyperspectrales provenant des capteurs
QuickBird, CASI ou ROSIS, autorisant une résolution au sol de 60 cm & 3 m, sur plusieurs centaines de
canaux spectraux. Grace & ce projet, nous disposons aussi de nombreuses expertises sur ces données.

Problématiques de recherche

Les travaux présentés dans ce mémoire se divisent principalement en trois problématiques qui sont
la représentation des régles, le processus de leur découverte et la classification floue. Nos travaux sur la
découverte de régles de classification nous ont conduits a explorer 'influence de la représentation sur
la capacité des régles a fagonner de nouvelles connaissances et & intégrer celles existantes. La représentation
a aussi une influence significative sur la qualité de reconnaissance et donc sur le pouvoir de prédiction
des régles découvertes. Cette problématique centrale nous a guidés lors de la définition d’une liste de
critéres permettant de qualifier les propriétés d’un « bon » classifieur. Cette liste nous a servi de base de
travail lors des mesures de lisibilité, de simplicité ou de performance des régles expliquant la présence ou
I’absence de divers attributs proposés par les experts en télédétection.

La seconde problématique concerne le processus de découverte de ces régles. Nous avons congu
des algorithmes évolutifs comprenant, divers opérateurs génétiques pour créer, manipuler et évaluer les
régles, ainsi que pour détecter la convergence de ’apprentissage. Nous abordons aussi le probléme du
raffinement des régles ainsi produites. On reproche souvent aux systémes de classifieurs de produire
une base comprenant trop de classifieurs, pour des problémes supposés en nécessiter beaucoup moins.

LGenetic and Evolutionary Computation Conference

?International Workshop on Learning Classifier Systems

3Fouille de données multi-stratégie, http://Isiit.u-strasbg.fr/afd/fodomust

4Tidal Inlets Dynamics and Environment, http://www.istitutoveneto.it/tide/project/tide.php
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Nous proposons une solution consistant & post-traiter la population de régles obtenue pour la raffiner,
améliorer la qualité de classification et réduire le nombre de régles. Pour cela, différentes approches ont été
testées. La premiére est basée sur les algorithmes génétiques et consiste & créer des individus représentant
des sous-populations de la population initiale. La seconde approche est basée sur la réutilisation des
régles de la base comme prédicats principaux pour former les nceuds d’un arbre de décision, découvert
avec une adaptation de I’algorithme inductif C4.5. Dans cette approche, I’algorithme de construction de
Parbre de décision permet une simplification automatique (en nombre de régles) de la base ainsi qu’une
hiérarchisation de ces régles, ce qui tend & donner & ’arbre un pouvoir de généralisation plus important.

Enfin, la troisiéme problématique porte sur 'un des derniers enjeux de la classification en télédé-
tection. Dans de nombreux cas il peut s’avérer nécessaire d’examiner — en plus du probléme habituel de
classification — I'idée qu’un méme pixel peut appartenir & plusieurs classes. Les thématiciens considérent
que les algorithmes permettant d’associer plusieurs classes a un pixel sont les seuls pouvant s’ap-
procher davantage d’une modélisation correcte de la réalité spectrale du terrain. En fait, chaque pixel
n’est qu'une mixture des valeurs de réflectance spectrale de plusieurs types de terrain différents, dont les
différentes abondances caractérisent la forme finale du spectre observé. On parle alors de classification
floue et sa résolution fait appel & la notion d’unmizing. Ces nouvelles méthodes sont trés prometteuses,
d’autant plus que l'utilisation de multiples canaux rend aujourd’hui ces approches envisageables. Diffé-
rents problémes de classification réclament différents formalismes de régles. A cette intention, nous avons
créé ou adapté, par des modifications parfois simples, des représentations permettant le renvoi d’une
valeur réelle correspondant a une information quantitative plutot que d’un simple attribut nominatif. A
la lumiére de certaines mesures de qualité validant les résultats, certaines de ces modifications nous ont
semblé bien appropriées pour la résolution des problémes de classification floue.

Structure de la thése

Ce mémoire suit le plan suivant. Le premier et le second chapitre se proposent d’effectuer un état de
l’art des différentes techniques supportant la production de régles de classification. Nous y étudions a la
fois des méthodes non évolutives comme les systémes inductifs ou les réseaux de neurones, et des méthodes
évolutives comme les algorithmes génétiques, les systémes & base de renforcement ou la programmation
génétique. Nous avons aussi construit une liste de critéres caractéristiques des classifieurs, que nous
présentons en premier.

Le troisiéme chapitre développe la problématique de la classification d’images hyperspectrales que
nous n’avons qu’effleurée jusqu’a présent et déploie, sous forme de figures, de diagrammes et de tableaux
récapitulatifs, notre matériel de travail. Les diverses images brutes que nous avons utilisées sont présen-
tées en complément des données validées par ’expert. Nous en profitons également pour préciser certains
aspects ayant trait a la complexité des données, suivis de quelques pré-traitements qui leurs sont habi-
tuellement réservés. Nous terminons par deux études, courtes mais essentielles pour poursuivre, I’une sur
la réduction des données, I’autre sur la robustesse d’une méthode évolutive face au bruit d’une image.

Les trois chapitres suivants composent le chainon central. Le premier des trois présente les concepts
théoriques de la découverte de nos régles. Les différents types de problémes de classification y sont
abordés, ainsi qu’une terminologie et une architecture générique, que nous avons définies et qui nous
servent de cadre de travail. Cette architecture comprend notamment un algorithme intervenant dans le
processus de la découverte des régles, ainsi qu'une série de mesures de qualité courantes ou nouvelles,
utiles pour nos expérimentations. Nous avons distingué les mesures spécifiques au domaine d’étude, par
rapport aux mesures génériques, et celles calculées durant le processus d’apprentissage par rapport a
celles utilisées en validation. Le chapitre suivant détaille les algorithmes, que nous avons concus, adaptés
a la classification standard et & la classification floue. Enfin, nous proposons dans la troisiéme partie de
nouveaux algorithmes de post-traitement des régles de classification.

Les études de cas du dernier chapitre éprouvent et comparent les différents algorithmes mis au point
durant nos travaux. Divers protocoles de validation, mesures de qualité et mesures comparatives ont été
utilisés pour juger de efficacité et de la compréhensibilité des régles de classification en environnement
rural ou urbain. Pour permettre & notre logiciel de s’adresser & de nombreux utilisateurs, experts ou
non en données de télédétection, nous présentons trois méthodes offrant une visualisation graphique de
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la population de régles et des résultats. Nous montrons que chacun des algorithmes de classification
s’adresse & une problématique particuliére. Cependant, nous proposons en conclusion un systéme a base
de vote consensuel surmontant les différences conceptuelles de ces algorithmes et permettant d’élire une
classification finale.

Nous terminons par un résumé de notre contribution, suivi d’un tour d’horizon des perspectives
offertes par nos travaux. Pour que ce mémoire puisse aussi étre repris par des lecteurs non initiés a
divers algorithmes basiques en TA, nous avons rassemblé les informations nécessaires en annexe. Les deux
premiéres annexes sont consacrées & 1’étude de certains algorithmes connexionnistes et des machines a
vecteur support, ainsi que leur apport en télédétection. Ces algorithmes sont connus pour étre robustes
dans ce domaine, nous les avons donc pris comme étalon pour nos comparaisons. La troisiéme annexe
détaille le fonctionnement des opérateurs génétiques. Les deux annexes suivantes exposent les objectifs
des deux projets dans lesquels nos travaux s’inscrivent (le projet TIDE et le projet FoDoMust). Enfin, la
derniére annexe décrit notre plate-forme d’expérimentation VPlat.



Chapitre 1

Etat de Dart

1.1 Introduction

Le traitement de grandes bases de données, qu’elles soient textuelles, économiques (assurances), mé-
dicales ou géographiques comme dans notre cas, fait traditionnellement appel au domaine de la fouille de
données (ang., data mining), car elle permet grace & un processus itératif d’extraction de connaissance
de traiter des données souvent volumineuses, provenant de sources physiques (capteurs) diverses et re-
groupant des données de différentes natures. Actuellement il existe de nombreuses méthodes de fouille
supervisée (inductives, connexionnistes, évolutives, ...) [Mitchell, 1997; Goldberg, 1989; Haykin, 1999].
Nous nous intéressons particuliérement a celles capables de découvrir des régles (ang., rule discovery) car
elles participent & la réduction et & I'explication de la connaissance dans ces grandes bases de données.
Le processus d’extraction est complexe car il faut préparer les données brutes, adapter des algorithmes
spécialisés puis éventuellement raffiner les régles obtenues pour obtenir une qualité de généralisation
suffisante.

L’état de I’art que nous proposons suit 2 axes différents en paralléle. Il met en valeur les méthodes
et les contributions théoriques qui permettent de produire des régles ou des systémes & base de régles
simples et efficaces (extraction depuis les réseaux de neurones, systémes inductifs, ...), ainsi que les études
théoriques qui ont porté sur I’amélioration de I'efficacité de ces régles. Le second axe concerne ’application
des algorithmes, principalement évolutifs, en télédétection. Nous montrons, & chaque fois que cela est
possible, ce qu’a apporté la génétique pour le traitement de ces images. Cette structuration en deux axes
distincts vient du fait qu’ils sont tout deux intégrés & notre problématique. Toutefois, il n’existe que peu
d’études combinant les deux. Sinon, lorsque les domaines se sont recouverts, nous signalons ces études et
ce dont la partie applicative a tiré parti de la partie théorique.

Le chapitre posséde la structure suivante. La premiére section dresse une liste des propriétés at-
tendues des régles de classification. Les sections suivantes sont structurées par classe de méthodes. La
section 1.3 présente les algorithmes inductifs travaillant directement avec une représentation arborescente,
la section 1.4 évoque les algorithmes qui permettent I’extraction de régles depuis les réseaux neuronaux,
les deux suivantes concernent les systémes évolutifs, I’apprentissage par renforcement en particulier et
nous conclurons dans la derniére section.

1.2 Propriétés des classifieurs

1.2.1 Critéres d’évaluation concernant les classifieurs extraits

Considérant le nombre impressionnant de techniques permettant de produire une base de régles,
qu’elles soient évolutives ou non, nous devons nous résoudre & aborder le probléme de maniére pragma-
tique. Le choix de la technique a adopter pour la résolution d’un probléme de classification ne doit pas
simplement tenir compte de sa performance ou sa robustesse. Les algorithmes que nous allons évoquer

5
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ont été évalués sur des données trés diverses et ils présentent eux-méme des approches différentes. Il est
donc difficile de déterminer la technique idéale, simplement en examinant les algorithmes d’extraction
ou de découverte de régles. Pour cela, nous avons commencé par tirer la liste des critéres caractérisant
un « bon » classifieur. [Zhou, 2003] identifie deux types de critéres d’évaluation : ceux concernant les
classifieurs extraits et ceux concernant ’algorithme d’apprentissage lui-méme.

La qualité de généralisation. Il s’agit d’une classe d’indices permettant de savoir si 'algorithme va
maintenir ses performances ou s’améliorer sur des données non apprises. Par exemple, I'indice PA
(ang., Predictive Accuracy) est défini comme suit :

PA— Nombre d’exemples non appris classifiés correctement

Nombre total d’exemples dans le jeu de test

La compréhensibilité. Comprendre une base de régles de maniére intelligible est trés importante pour
I’expert dans le cadre d’une validation, ou tout simplement lors d’une consultation de la connaissance
apprise par le systéme. Malheureusement, il n’est pas facile de mesurer un tel critére notamment
a cause de son caractére subjectif mais aussi du fait qu’il est dépendant de la représentation. Par
exemple, on peut considérer la complexité syntaxique de la régle mesurée par la longueur de son
expression, la spécificité de ’expression, le nombre de régles dans la base ou le nombre de conditions
dans chacune des régles comme étant des mesures adaptées au cas des systémes de classifieurs (SC),
dont nous allons parler dans la suite.

La robustesse face aux données. En télédétection comme en base de données nous rencontrons sou-
vent des données bruitées, erronées, redondantes ou manquantes. Quel est la robustesse du classifieur
face a de tels ensembles 7 De tests peuvent étre effectués par ajout de bruit de laboratoire (il s’agit
d’un bruit dont la distribution est connue) ou sur des images contenant des artefacts réels. De plus,
le bruit étant une augmentation de ’entropie moyenne des données, on peut noter qu’un classifieur
plus simple (délivrant ou stockant moins d’informations) représente une solution plus robuste car
ce classifieur ne pourra pas étre placé en situation de sur-apprentissage.

L’indépendance algorithmique. Un classifieur est indépendant de 1’algorithme qui I’a créé s’il peut
étre interprété ou amélioré a ’aide d’un autre algorithme ou d’une technique qui ne reposent pas
sur les mémes fondements. Par exemple, un classifieur dont les paramétres ont été découverts par
un algorithme génétique et qui est suffisamment souple pour étre ensuite optimisé par un recuit
simulé est dit avoir une indépendance algorithmique élevée. Cette notion est totalement liée & I'inter-
opérabilité de la connaissance entre les différents algorithmes, et donc d’une certaine facon, a la
simplicité de la représentation.

1.2.2 Critéres d’évaluation concernant 1’algorithme d’apprentissage

Les critéres que nous avons vus dans la section précédente ne sont pas suffisants : en effet, deux
algorithmes différents peuvent produire des régles simples, par exemple d’une longueur d’expression faible.
Les critéres que nous allons voir ici permettent de discriminer les algorithmes d’apprentissage eux-mémes.

La représentation de la connaissance. Est-ce que l'algorithme permet de réduire la complexité de
la représentation de la connaissance? Il apparait évident que, pour les jeux de données de taille
importante, un étre humain a de la difficulté & comprendre les régularités et les relations entre
les attributs de ces données. De nombreuses représentations sont sensées apporter une réponse a
ce probléme : nous allons évoquer les réseaux de neurones, les arbres de décision ou les bases de
classifieurs. Méme si le choix de la représentation reste subjectif, il est sans doute préférable que
I’algorithme découvre les structures les plus simples. Cette simplicité peut, par exemple, se calculer &
partir du nombre de neurones dans un réseau, de nceuds dans un arbre de décision ou de classifieurs
dans le cadre des SC.

La vitesse de traitement. Importante lors du traitement de larges jeux de données, elle permet aussi,
si elle est faible, de rendre ’algorithme éligible au tuning, permettant d’optimiser certains para-
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métres A travers un grand nombre d’apprentissages. Ou encore de traiter des contenus dynamiques
(flux vidéos, ...).

La généralité de la connaissance apprise. Distincte du critére de généralisation, il s’agit d’observer
si différents algorithmes produisent le méme type de connaissance, par exemple en comparant les
attributs sélectionnés par un arbre de décision par rapport aux attributs privilégiés par les poids
de connexion d’un réseau de neurones. Une connaissance qui posséde des formalismes similaires
ou stables quel que soit I'algorithme d’apprentissage offre une bonne garantie d’authenticité et de
véracité.

Le déterminisme. Ce critére est valable pour un bon nombre d’algorithmes non déterministes, principa-
lement les algorithmes évolutifs. Un algorithme est dit déterministe s’il produit les mémes résultats
de classification sur les exemples non appris — si ce n’est les mémes classifieurs dans le cas des SC
— aprés différents cycles d’apprentissage. Un algorithme évolutif déterministe offre la garantie que
son aspect stochastique n’influence par les résultats de son apprentissage.

L’expansibilité dénote la capacité de 'algorithme & s’adapter & des jeux de données de grande taille.
Elle se mesure habituellement par sa complexité exprimée en fonction d’un ou plusieurs parameétres
spécifiques a ’algorithme ou aux données (par exemple, est-il exécuté en temps linéaire ou quadra-
tique par rapport au nombre de canaux ou de pixels de I'image ?).

L’expertise externe. L’algorithme a-t-il besoin, & part le jeu d’apprentissage, d’une expertise externe
pour apprendre ? Il peut s’agir de jeux de données supplémentaires intervenant au départ ou & une
étape précise de l'algorithme. Certains systémes dit interactifs sont dépendants de l'expert lors
d’une phase de validation ou de paramétrage intermédiaire. Un autre point de vue peut étre abordé
concernant ’expertise externe. L’algorithme nécessite-t-il une connaissance poussée de son propre
domaine pour étre manipulé ? Par exemple, les algorithmes qui possédent de nombreux paramétres
sont souvent connus comme étant plus difficiles & comprendre et donc & maitriser.

Les critéres comme la vitesse de traitement ou I’expansibilité ne sont pas trés importantes concernant
les classifieurs eux-mémes, car ces derniers sont, dans la plupart des cas, évaluables en temps constant en
exploitation et donc linéairement dépendant de la taille du jeu de données.

Cette liste nous servira de fil conducteur pour ce chapitre, lors du parcours de ’existant, ainsi que
de base de travail pour le reste de cette thése, lors de la construction de nos propres représentations. Ils
guideront notamment le choix des représentations des régles ainsi que le choix des méthodes et de leur
implémentation. Nous commencons donc par évoquer les techniques permettant de construire des régles
arborescentes.

1.3 Construction de régles arborescentes

1.3.1 Graphes d’induction

Ces méthodes produisent & partir d’'un ensemble d’exemples classifiés, un arbre ou graphe d’induction
permettant de relier une variable & prédire (comme la prévision d’un match) avec certains attributs expli-
catifs (le temps actuel, la forme des joueurs, la direction du vent, [Quinlan, 1986]). Leur utilisation dans
des domaines comme ’aide au diagnostic médical, la gestion ou le marketing est due a leurs nombreuses
qualités :

— ils permettent de créer un ensemble minimal de régles de décision,

— ils peuvent s’appliquer & des bases de données de grande taille,

— les résultats produits (graphes) sont facilement interprétables par un utilisateur ou un expert du

domaine non spécialiste en informatique,

— ils sont capables de manier aisément des données hétérogénes de différents types : binaires, qua-

litatifs (c’est-a-dire pris dans un ensemble fini de modalités) ou quantitatifs (entiers ou continus
que ’on doit discrétiser avec des méthodes statistiques).
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Les travaux de [Quinlan, 1986] et [Quinlan, 1993] proposent des algorithmes relativement simples
(respectivement ID3 et C4.5) : ils produisent des arbres dont chaque branche représente la valeur d’un
attribut prédictif et chaque nceud correspond a une population d’individus qui satisfont toutes les valeurs
des attributs placés entre ce nceud et la racine de 'arbre. Les valeurs des attributs peuvent étre binaires,
qualitatives ou continues. Pour traiter les valeurs continues, on utilise des algorithmes de discrétisation
qui ont pour objectif d’obtenir un nombre de classes relativement faible et une bonne répartition statis-
tique entre les classes. Voici comme illustration, 'algorithme C4.5, qui nécessite au préalable quelques
définitions :

Soit P = (p1,...,pn) une distribution de probabilité des classes, alors I’entropie I(P) se calcule par :

I(P) == pilog(p:) (1.1)
i=1

Si nous divisons une partition 7" sur la base de la valeur d’une variable exogéne X en n ensembles
T, a T, alors I'information requise pour identifier la classe d’un élément de T est :

Info(X,T) =) %;()T’) (1.2)

i=1

ot Q(T) est le cardinal de I’ensemble T'.
Le gain d’information da & ’attribut X s’exprime donc par :

Gain(X,T) = I(T) — Info(X, T) (1.3)

Cette fonction a tendance & favoriser les attributs qui possédent un grand nombre de valeurs. Pour
compenser cet effet, Quinlan suggére d’utiliser & la place le GainRatio défini par :

Gain(X,T)
GainRatio(X,7T) = c—F—F"— 14
ainRatio(X, T) SplitInfo(X,T") (14)
ot SplitInfo(X,T) mesure la répartition des exemples selon I’attribut X. Une définition possible pour
SplitInfo est :

(1.5)

SplitInfo(X,T) =1 <Q(T1) Q(Tm))

Q) Q)

ou {T1,..., T} est la partition de T par les valeurs de X.

C4.5 est présenté dans Ialgorithme Al.

Cet algorithme renvoie un arbre dans lequel chaque noeud permet de partager I’ensemble d’exemples
en fonction du critére qui semble le plus discriminant pour ’algorithme, d’aprés la fonction GainRatio.
Puis une phase d’élagage emploie une fonction heuristique permettant d’estimer, méme si en réalité elle
n’est pas pertinente sur ’ensemble d’apprentissage, I’erreur d’un sous-arbre donné qui est alors remplacé
par une feuille (simplification de 'arbre de départ). En exploitation, il ne reste plus qu’a parcourir cet
arbre pour déterminer les régles de classification associées et les employer pour classer des exemples qui
n’étaient pas dans la base initiale.

Enfin, citons la méthode SIPINA [Zighed et al., 1992] qui tente de répondre & certains inconvénients
des méthodes arborescentes. Sans entrer dans le détail, il existe un certain nombre de difficultés spécifiques
a ce type de méthode qui sont I’insensibilité a I’effectif (les classes sous-représentées ont le méme poids que
les autres) ou la préférence a la complexité (les méthodes construisent souvent des arbres contenant de
nombreux neeuds). La méthode SIPINA généralise la notion d’arbre de décision en construisant plutot un
graphe, dit graphe d’induction dont la particularité est d’avoir un nombre de noeuds relativement restreint.
Certaines méthodes de SIPINA ainsi que des méthodes de classification génériques sont intégrées dans
un logiciel nommé TANAGRA [Rakotomalala, 2005], que nous avons utilisé dans nos expérimentations
pour classer des données de télédétection par des méthodes inductives.
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ALGORITHME Al
CREATION D’UN ARBRE DE DECISION PAR C4.5

~ PARAMETRES - R est I'ensemble des variables exogénes, C la variable endogene (a prédire) de
valeurs ¢y, ..., cp, S I'ensemble des exemples d’apprentissage

~ RESULTAT - T', I'arbre de décision créeé

~ FAIRE_N@&UD(F,V) crée un nceud renvoyant la valeur V si la condition E est vérifiée. Si V est
lui-méme un arbre, on renvoie la valeur de I'évaluation de cet arbre

~ COMPTE(S,C,v) renvoie le nombre d’enregistrements de S dont C = v

~ ENRACINE(T',N) enracine l'arbre N alaracine de T’

~ ELAGUER(T) utilise une heuristique pour remplacer des sous-arbres par des feuilles afin de
simplifier l'arbre T’

st S = {} alors
Renvoyer ERREUR

fin st

st CoMPTE(S,C,v) = Q(S) alors
~» Si C a la méme valeur v dans S
T := FAIRE_ N®UD(TRUE,v)
Renvoyer T

fin st

st R = {} alors
Trouver v tel gque COMPTE(S,C,v) > COMPTE(S,C,v") pour toute valeur v’ possible pour C
T := FAIRE_ N®UD(TRUE,v)

Renvoyer T
fin st
Trouver D tel que GAINRATIO(D,S) > GAINRATIO(D',S) pour toute variable {D, D’} de R
soit {d;|i =1,...,n} l’ensemble des valeurs de la variable D et n leur nombre
Trouver {S;|i = 1,...,n} Uensemble des enregistrements de S dont la variable D vaut d;
—{)

pour i de 1 a n faire
N := FAIRe_ N®&uD(D =d;, C45(R - {D}, C, S;))
:= ENRACINE(T,N)
fin pour
Renvoyer ELAGUER(T)

Algorithme 1: Fonction C45(R,C,S)
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1.3.2 Algorithmes inductifs

De nombreux domaines d’étude créent fréquemment des masses d’informations gigantesques qui sont
ardues & disséquer, & cause de la lourdeur des traitements. L’analyse de ces grandes quantités de données
passe par la description de concepts sous-jacents permettant de résumer plusieurs enregistrements par
une connaissance nouvelle, plus compacte, appelée objet symbolique. Certaines méthodes parviennent
a cette abstraction des données de base en appliquant un processus de généralisation dirigé par deux
critéres : minimiser le volume des données et minimiser la perte d’informations induite [Bock et Diday,
2000] comme P’algorithme AQR ne créant qu’une seule régle de classification par classe a décrire. Cette
méthode est célébre depuis qu’elle a été testée avec succés sur des plants de soja. Nous pouvons aussi
citer CN2 combinant les avantages d’AQR et d’ID3 [Clark et Niblett, 1989].

Les algorithmes correspondants sont beaucoup utilisés pour extraire des connaissances & partir d’une
base de données. Pour satisfaire les critéres évoqués dans le paragraphe précédent, ils utilisent des mesures
de recouvrement (la généralisation d’une classe donnée doit recouvrir le maximum des individus de cette
classe), d’homogénéité, de discrimination (minimiser I’erreur de classement des contre-exemples) et de
densité (les individus de la classe doivent étre regroupés dans le volume le plus faible possible). On y
adjoint une méthode de spécialisation permettant de s’assurer que les individus singuliers sont éliminés :
pour atteindre cet objectif, on cherche & trouver un bon compromis entre I’augmentation de la densité
et la perte des individus extrémes. Enfin, une méthode de décomposition comme la méthode DIV de
[Chavent, 1998] finalise le traitement en divisant les classes en fonction d’un critére binaire, ce qui permet
de construire des disjonctions de contraintes.

Ces méthodes sont souvent considérées comme étant monothétiques, car le choix du meilleur attribut
dans la construction de ces arbres se fait toujours en le considérant seul, face & ’ensemble des classes
a discriminer. D’autres méthodes dites polythétiques [Palma et al., 1997] ou poly-attributs prennent en
compte la dépendance de certains attributs entre eux et donc les sélectionnent en blocs pour la construc-
tion des régles, ce qui permet de mettre en évidence la capacité de prédiction de plusieurs variables
agissant simultanément. Citons, par exemple, des algorithmes symboliques d’exploration sélective de re-
lations binaires comme le systéme CHARADE [Ganascia, 1987], ou des méthodes disjonctives parcourant
Pespace des généralisations comme la stratégie de ’espace des versions [Mitchell , 1982] ou l'algorithme
de I’étoile [Michalski, 1983]. Enfin, signalons que la qualité des techniques de généralisation est fortement
dépendante du bruit présent dans les données, ainsi que des informations incomplétes ou incohérentes.
Des algorithmes d’estimations des données manquantes se révélent donc vite étre nécessaires, par exemple
Palgorithme MVTI (ang., Missing Value Imputation, [Cao, 2001]).

1.4 Extraction de régles depuis les réseaux neuronaux

Dans cette section, nous allons nous intéresser & ’extraction de régles, dites régles de production,
a partir de réseaux neuronaux & connaissance de type distribuée, et comparer les régles obtenues avec
celles des systémes d’apprentissage symbolique comme les arbres de décision ou les systémes experts. Nous
verrons notamment les algorithmes NNRE [Setiono et Liu, 1996], VIA [Thrun, 1995] et RULEX [Andrews
et Geva, 1995] car ils sont de bons exemples des différentes approches existantes (décompositionnelle,
pédagogique, ...). Notre propos n’est pas d’étudier ici la totalité des algorithmes disponibles pour extraire
de telles régles depuis un réseau de neurones. De nombreux autres algorithmes existent et le lecteur
intéressé pourra se référer A KBANN [Sordo, 1997], SUBSET [Towell et Shavlik, 1993] ou M-of-N [Setiono,
2000], pour les principaux utilisés.

La littérature a souvent comparé les avantages et les inconvénients de chacune de ces approches.
[Osorio, 1998] a résumé dans un tableau les correspondances structurelles entre les réseaux de neurones
et la base de connaissance d’un systéme d’apprentissage symbolique (voir tableau 1.1).

Les différences les plus courantes entre ces deux approches peuvent étre résumées de la maniére
suivante :

— généralement, on considére un réseau de neurones artificiels comme une boite noire (ang., black

boz). En effet, aprés apprentissage de deux problémes diamétralement opposés, on peut obtenir



1.4. EXTRACTION DE REGLES DEPUIS LES RESEAUX NEURONAUX 11

Modéle connexionniste | Systéme symbolique
Unités d’entrée Faits (prémisses de base)
Unités de la couche cachée | Conclusions intermédiaires
Unités de sortie Conclusion finales

Poids des connexions Dépendances

TaB. 1.1 — Correspondances structurelles entre systémes d’apprentissage symbolique et réseaux neuro-
naux.

deux réseaux de neurones dont les différences ne se situent qu’aux niveaux des poids de connexion,
trés difficiles & expliquer, surtout quand le nombre de neurones augmente (la topologie restant
quand & elle générique : une couche d’entrée, une couche de sortie et une ou plusieurs couches
cachées). D’autre part, les méthodes inductives & base d’arbres de décision sont connues pour
produire un ensemble de régles plus facilement interprétables que celles produites & partir d’une
matrice de poids de connexion [Shavlik et al., 1991],

— Dl'apprentissage classique des RN par rétro-propagation requiert un temps de calcul plus important
[Dietterich et al., 1990],

— enfin, les deux approches ont une précision de prédiction relativement semblable, cependant la

rétro-propagation donne parfois des résultats légérement meilleurs [Quinlan, 1994].

De maniére générale, les études effectuées sur les réseaux neuronaux artificiels (RN) ont exploré deux
types de représentation de connaissances [Osorio, 1998] :

— Les représentations localistes : les concepts (c’est-a-dire les objets & apprendre) correspondent
& des neurones spécifiques. Les réseaux & zone d’influence comme les RBF (ang., Radial Basis
Function) sont des modéles localistes. L’intégration de concepts symboliques sera plus simple car
chaque concept correspondra a un neurone. Les propriétés relationnelles entre les différentes unités
pourront étre mieux étudiées, notamment les relations contextuelles entre les concepts, les unités
fortement liées, ... De plus, il est facile d’extraire une distribution probabiliste pour chaque concept.
Ce type d’approche peut étre intéressant en télédétection. Malheureusement, le codage du réseau
est peu adapté a de gros ensembles de connaissances & cause de la prolifération des connexions
entre unités.

— Les représentations distribuées : un ensemble de neurones est associé a chaque concept, et chacun
de ces neurones participent a la représentation de ce concept. La connaissance est répartie au sein
des unités et supporte le bruit : si la valeur individuelle d’un neurone change, la représentation
globale du concept n’est pas déformée. Les principaux algorithmes d’apprentissage et d’extraction
de régles présentés dans la littérature sont plutot concernés par cette approche. Les réseaux de type
PMC ont une approche distribuée. Ce type de réseau est capable de généraliser plus facilement
(la valeur d’un exemple particulier ne domine pas l’apprentissage d’un concept) et le nombre
d’unités nécessaires pour le stockage de l'information est moins important (avec n unités, on
représente n concepts localistes et 2" concepts distribués dans le cas binaire). Malheureusement,
la représentation de relations arbitraires entre concepts est plus délicate.

De nombreux travaux ont été entrepris pour tenter d’obtenir & partir des réseaux de neurones des
régles aussi simples et interprétables que ceux des arbres de décision. Ces travaux ont donné lieu a des
algorithmes de recherche explorant les connexions et les poids des neurones. Comme le temps de calcul
suit rapidement une courbe exponentielle, des méthodes de simplification interviennent pour déduire a
partir de la valeur des connexions une réduction de ’espace & explorer. Par exemple, dans la méthode M-
of-N, les valeurs d’entrées sont restreintes & —1 ou 1, et la fonction de transition utilisée est une tangente
hyperbolique, permettant de limiter I’activation des neurones a 1 ou 0 [Setiono, 2000]. Malheureusement,
les capacités d’apprentissage et de modélisation du réseau risquent d’étre limitées par des problémes
nécessitant une définition uniforme de la fonction de transition.
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1.4.1 L’algorithme NNRE

Obtenir des régles humainement interprétables constitue dans nos travaux un objectif trés important :
ces régles représentent une forme de connaissance et celle-ci se doit d’étre facilement vérifiable par des
experts de telle maniére & pouvoir étre étendue, retransformée voire critiquée et rejetée, ou comprise pour
étre réutilisée dans d’autres domaines. Parmi toutes les méthodes d’extraction de régles a partir de réseaux
neuronaux, il en existe une qui met particuliérement l'accent sur la production de régles symboliques
précises. L’algorithme NNRE (ang., Neural Network Rule Extraction) fonctionne globalement selon le
modéle suivant [Setiono et Liu, 1996] :

1. Pour obtenir le bon nombre de couches cachées du réseau, deux approches sont possibles, consistant
respectivement & augmenter le nombre de couches d’un réseau minimaliste ou & diminuer le nombre
de couches d’un réseau surchargé. NNRE, dont ’objectif est de créer des régles simples, utilise la
seconde approche puisqu’elle permet d’éliminer les neurones inutiles.

2. Le réseau est ensuite élagué. Cette fois-ci, c’est les connexions inutiles qui sont visées, en fonction
d’un critére basé sur leurs poids maximum. Aprés chaque élagage, le réseau est ré-entrainé sur
la base d’exemples et le processus d’élagage est stoppé lorsque le taux de classifications correctes
descend en dessous d’un certain seuil. On peut noter que plus le seuil sera élevé, plus les régles
contiendront un nombre élevé de parties conditions lorsqu’elles seront extraites.

3. Les valeurs d’activation des couches cachées, si elles sont continues, sont ensuite discrétisées avec
un algorithme de clustering quelconque de telle sorte & pouvoir produire des régles de type If ...
Then ... Else simples munies des opérateurs de comparaison classiques (<, >, ...).

4. Enfin, les régles proprement dites sont extraites en utilisant les attributs les plus fréquents carac-
térisant chaque classe (un ensemble d’exemples étiquetés de la méme fagon) pour construire les
conditions des régles.

Produisant des régles symboliques, on peut se questionner sur ce qu’apporte cet algorithme par
rapport a C4.5, une méthode connue pour créer des arbres de décision élagués et des régles ayant une
bonne capacité de généralisation [Quinlan, 1993]. Les résultats seraient intéressants a analyser notamment
pour les critéres de lisibilité et de performance. La littérature nous documente sur une telle comparaison
dans [Setiono et Liu, 1996] qui s’est faite entre autres sur des données médicales dans lesquelles on doit
prédire le caractére malin d’une molécule en fonction d’un certain nombre de critéres C,,. Les tableaux
1.2 et 1.3 permettent & la fois de se faire une idée sur le formalisme des régles générées par les deux
approches et de comparer leur efficacité.

Rq If C1 <7And Cy <8 And C3 < 3 And Cg < 9 Then bénin
Rs If Cy <7And C5; <8 And (g < 3 And Cs < 9 Then bénin
R3 If C5 <8 And (5 <3 And (g < 3 And Cs < 9 Then bénin
Reégle par défaut | malin

TaB. 1.2 — Extraction de régles pour la détection de molécules cancéreuses & partir d'un réseau de
neurones (NNRE).

Les résultats sur I’ensemble de test sont trés similaires pour les deux approches (95% d’exemples
correctement classifiés). D’apres Setiono [Setiono et Liu, 1996], les régles produites par NNRE possédent
généralement plus de tests qu’avec C4.5, mais sont moins nombreuses. L’utilisation d’un réseau neuronal
dans NNRE et d’une couche d’entrée mélant tous les attributs en méme temps permet d’explorer les
différentes combinaisons d’attributs de maniére plus systématique qu’avec C4.5. Ainsi, les régles produites
par NNRE sont plus longues mais aussi plus spécifiques.
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R, If C;y <7 And C5 < 3 Then bénin
Ry If C7 <7 And C4 < 2 Then bénin
R3 If C5 > 5 Then malin

Ry If Cg > 9 Then malin

R If C; > 7 Then malin

R If Cy > 4 Then malin

Régle par défaut | bénin

TAB. 1.3 — Extraction de régles pour la détection de molécules cancéreuses a l’aide de C4.5.

1.4.2 L’algorithme RULEX

L’algorithme RULEX [Andrews et Geva, 1995] est un algorithme d’extraction de régles a partir des
réseaux neuronaux du type de ceux qui sont appris a ’aide de I’algorithme contraint de rétro-propagation
du gradient (ang., Constrained Error Back Propagation ou CEBP), dont certains poids sont fixés durant
Papprentissage. Selon la classification de Craven [Craven et Shavlik, 1994] ou d’Andrews [Andrews et al.,
1995], l'algorithme RULEX correspond & une approche décompositionnelle. Cette approche considére lors
de T'extraction des régles la topologie interne du réseau, c’est-a-dire les valeurs caractérisant l'activation
des neurones cachés ou non, ainsi que les valeurs des connexions entre les neurones. Des régles sont créées
séparément pour chaque neurone des couches cachées et un ensemble complet de régles est ensuite dérivé
lors d’une phase finale.

L’algorithme fonctionne de la fagon suivante :

1. Chaque neurone dans le réseau est une unité de réponse locale (ang., Local Response Unit ou LRU)
semblable a celle des réseaux dits RBF (ang., Radial Basis Function), & la seule différence que les
fonctions d’activation sont des sigmoides plutdt que des gaussiennes.

2. Le réseau est appris en ajustant les centres, les largeurs et les distances des pics (correspondant a
Pintersection des fonctions sigmoidales) afin de réduire ’erreur de la couche de sortie.

3. Ensuite, les régles sont extraites en encodant directement la réponse de chaque unité cachée. Les
régles sont de la forme suivante :

If Picy actif AND ... AND Pic,, actif Then Class,

4. Enfin, une phase de raffinement est utilisée pour augmenter la compréhensibilité de la base de régles
obtenue. Trois opérations de simplification sont employées. Si toutes les valeurs d’attribut sauf une
sont représentées dans une régle, une régle formée de la négation de la valeur absente est utilisée a
la place. Si un pic reste actif malgré toutes les valeurs possibles pour un attribut, cet attribut est
éliminé car il ne contribue pas & la discrimination des exemples. La troisiéme opération, I’absorption,
concerne la combinaison de plusieurs régles redondantes.

Cet algorithme peut s’appliquer sur des données discrétes, continues ou mixtes. Un autre avantage
est le caractére local des LRUs : chaque neurone peut étre encodé dans une régle indépendante des autres
neurones. Cependant, cet algorithme posséde aussi un certain nombre d’inconvénients. Tout d’abord, les
LRUs ne doivent pas se chevaucher dans leur espace d’activation. Sinon, les régles extraites ne pourront
pas traiter les exemples qui prennent leurs valeurs dans cet espace de chevauchement [Andrews et Geva,
1996]. Andrews suggére d’utiliser & la place un autre formalisme de régles, a base de logique floue. De
plus, le caractére local de ces unités empéche le traitement de certains problémes qui peuvent étre décrits
avec des régles globales. Un autre inconvénient est le fait que RULEX nécessite une architecture de réseau
et un apprentissage bien particulier, ce qui le restreint aux problémes que ces réseaux peuvent effective-
ment apprendre. Malgré tout, cet algorithme est connu pour produire des régles fiables, performantes et
compréhensibles. Sa rapidité présente un intérét dans le traitement de larges bases de données, notam-
ment en télédétection. Par exemple, RULEX a été comparé a ’algorithme CasCor lors d’un probléme
de classification d’eau et de forét [Nayak et al., 1997]. RULEX a montré une performance supérieure
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pour un réseau plus petit (architecture 3 : 5 : 1 contre une architecture 15 : 2 : 1). Nous pouvons aussi
citer le systéme hybride GYAN [Nayak, 2000], incorporant divers algorithmes d’extraction de régles, dont
RULEX, dans I’étude de problémes du monde réel (télédétection, cancérologie, cardiologie).

1.4.3 L’algorithme VIA

L’algorithme VIA (ang., Validity Interval Analysis) [Thrun, 1993; Thrun, 1995] est un algorithme
d’extraction de régles qui correspond a une approche pédagogique (ang. Black-boz approaches) [Andrews
et al., 1995]. Ce type d’approche concerne les algorithmes d’extraction qui ne tiennent pas compte des
unités de la couche cachée mais uniquement des valeurs obtenues par les neurones de sortie en fonction
des valeurs des neurones d’entrée. En ce sens, les méthodes pédagogiques n’imposent pas de pré-requis
sur la topologie du réseau et sur l'algorithme d’apprentissage, et peuvent étre considérées comme des
méthodes génériques.

L’algorithme fonctionne de la maniére suivante :

1. Chaque neurone zj; du réseau (ou un sous-ensemble de neurones, par exemple, uniquement les
neurones d’entrée et de sortie) est associé a un intervalle de validité [ay; bg]. Cet intervalle représente
une restriction sur le domaine de valeurs pour lesquelles le neurone en question peut étre activé. Ce
domaine de valeurs peut étre défini par 'utilisateur ou par I’algorithme (|0 ;1] par défaut).

2. Lors d’une phase dite en avant (ang., forward phase), ces intervalles sont calculés pour tous les
neurones en tenant compte du comportement du réseau lors de la présentation des exemples d’ap-
prentissage. La fonction d’activation est utilisée pour obtenir les bornes minimales et maximales
des valeurs d’activation des différents neurones. Notamment, les intervalles des neurones qui ne sont
jamais activés sont supprimés.

3. Lors d’une phase dite en arriére (ang., backward phase), ces intervalles sont raffinés. Pour chaque
neurone zy, l'intervalle de validité correspondant [ay; b] est réduit si le minimum (respectivement
le maximum) de la valeurs des neurones de la couche précédente connectée & xy, est supérieure
(respectivement inférieure) & la borne ay (respectivement by).

4. Les deux phases précédentes sont répétées jusqu’a obtenir la convergence de ’algorithme. Ensuite,
les intervalles sont analysés et utilisés pour dériver un ensemble de régles. Ces régles sont de la
forme If ... Then. Chaque condition est formée d’une conjonction de contraintes booléennes sur les
valeurs des neurones d’entrée. Le résultat de la conditionnelle est une expression donnant l'intervalle
de validité d’un neurone de sortie.

L’un des avantages concerne la correction des régles extraites : I’algorithme peut prouver que les régles
sont correctes en les inversant (R est remplacé par R) et en cherchant les contradiction logiques pour
toute valeur possible des neurones d’entrée (notamment R ne doit jamais étre vraie). C’est ce processus
qui permet & l'algorithme d’affiner des régles générales (« tout est de la classe C' %), jusqu’a les rendre
suffisamment spécifiques pour qu’elles soient correctes. L'un des principaux inconvénients reprochés a
cette méthode découle justement de la remarque précédente : le nombre de régles est souvent élevé et
la recherche de régles correctes peut les rendre trop spécifiques. Par exemple, dans un probléme de bras
de robot, seulement 84% de I’espace des valeurs d’entrée ont pu étre couvertes par 10000 régles [Thrun,
1995]. A notre connaissance', nous n’avons pas trouvé d’applications de cet algorithme en télédétection.
Malgré le fait que les régles produites soient simples, ce qui est utile pour ’explication de connaissance
dans ce domaine, il semblerait, selon Thrun lui-méme?, que le traitement de larges bases de données est
trés difficile.

ISelon la bibliographie publiée par S. Thrun.
2« The process of testing each input pattern [...] is usually computationally intractable for larger domains. » [Thrun,
1993]
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1.5 Découverte génétique de régles

Connus sous les noms d’algorithmes évolutifs ou algorithmes évolutionnaires, ils sont sensés imiter
les mécanismes darwiniens de 1’évolution naturelle. Deux notions sont au moins communes & tous les
algorithmes évolutifs, les différenciant ainsi des méthodes non évolutionnaires :

— basés sur la notion de génération, ce sont des algorithmes itératifs. Possédant de nombreux para-
métres controlant I’évolution de 'apprentissage ou le comportement des opérateurs génétiques, ils
se classent parmi les algorithmes les plus riches en paramétres. Une génération, ou cycle, crée une
multitude d’individus (appelés selon le contexte chromosome, classifieurs ou animat) représentant
chacun une solution au probléme & résoudre. L’ensemble de ces individus, appelé population, est
manipulé de telle sorte que I'on puisse finir par trouver, parmi une partie de ces individus, une
réponse quasi optimale au probléme posé,

— P’évolution de l'algorithme est matérialisée par le fait que la population des individus remplace
a chaque génération un sous-ensemble de la population précédente. Chaque population est des-
tinée & contenir un ensemble conséquent de solutions potentielles indépendantes, ce qui conduit
ces algorithmes & étre hautement parallélisables et leur permet d’exploiter 'efficacité du calcul
distribué.

1.5.1 Apprentissage par algorithme génétique

Les algorithmes génétiques (AG), proposés par Holland [Holland, 1975] puis développés par Gold-
berg [Goldberg, 1989], sont des méthodes d’optimisation stochastiques. Ils peuvent résoudre des problémes
d’optimisation de fonctions, de régression ou de classification et sont souvent meilleurs en temps de calcul
que les algorithmes déterministes pour les problémes NP-complets. Le but est de faire évoluer une po-
pulation d’individus (chromosomes) représentant les solutions au probléme a résoudre, le tout guidé par
une fonction fitness. Au départ initialisée de maniére aléatoire, la population est brassée génétiquement
par trois types d’opérateurs. Le premier est nommé croisement (ang., crossing-over), et exploite la popu-
lation courante en échangeant, entre deux individus parents, une partie de leur patrimoine génétique. Les
croisements peuvent étre & un point, & n points ou uniforme. Le second est nommé mutation, et explore
I’espace de recherche en substituant l’'un des génes d’un chromosome par un autre. Le troisiéme opérateur
est la sélection qui intervient & plusieurs niveaux de ’algorithme : il fournit le matériel génétique & croiser
ou & muter aux opérateurs correspondant (opérateur de sélection pour les parents) et intervient dans le
recyclage générationnel (opérateur de remplacement pour le recyclage). Concernant les représentations
des chromosomes, on peut citer les encodages par des séquences de valeurs binaires (la plus classique),
entiéres ou continues, ou les encodages arborescents.

De trés nombreux travaux ont été menés en algorithmique génétique concernant le traitement
d’images ou la télédétection. Nous ne pouvons pas tous les citer, mais nous pouvons donner un apercgu des
plus intéressants, notamment concernant la gestion du bruit dans les images, soit au niveau du capteur
[Daida et al., 1995], soit au niveau des objets [Ozcan et Mohan, 1997]. Les deux approches sont décrites
ci-dessous.

En analyse d’images topographique, [Daida et al., 1995] a utilisé une hybridation de deux techniques,
utilisant pour 'une un algorithme génétique, pour 'autre une intégration par transformée de Fourier,
chacune prédisant une partie des coefficients d’une série de Fourier pour la reconnaissance de la micro-
topographie de la surface de ’eau. Cette méthode a donné, d’aprés les auteurs, des résultats intéressants
malgré la présence de pics de dépassement de capacité du signal, de bruits aléatoires, d’artefacts-bulles,
donnant aux données un caractére non-linéaire.

Souvent la détection d’objets dans les images satellitaires est perturbée par le fait que ces objets
sont partiellement occultés par d’autres objets présents dans l'image ou par le bruit atmosphérique. Un
algorithme génétique, mis au point par Ozcan [Ozcan et Mohan, 1997], a été appliqué a la reconnaissance
de ce genre d’objets (ang., shape matching). Le génome représente une chaine dérivée d’une grammaire
congue pour étre flexible et indépendante a la fois de la taille et de la rotation des formes. La grammaire,
ressemblante au langage LOGO [Logo, 2005], permet de déterminer le contour d’un polygone en utilisant
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des informations relatives aux segments déja évalués. Des tests ont été effectués jusqu’a 25% de niveau
de bruit et ’algorithme prédisait les contours exacts dans un cas sur deux.

Dans le domaine de la télédétection pure, on peut citer les travaux publiés dans [Liu et al., 2004]
concernant ’optimisation génétique d’individus représentant un réseau de neurones, utilisant la rétro-
propagation comme pression de sélection. L’algorithme génétique GA-MLP (ang., GA-based Multi-Layer
Perceptron) a été appliqué sur des images SPOT? et CBERS®. La performance moyenne de 1’algorithme
a été montrée comme étant supérieure a un algorithme de type PMC simple, tout en donnant le meilleur
réseau en moins de 15 générations génétiques au lieu de 3000 époques. Malgré tout, l’algorithme ne
peut proposer une explication intelligible de la connaissance découverte par les réseaux de neurones (vus
comme des boites noires). A l'inverse, I’étude de [Brumby et al., 2000], présente un chromosome dont
chaque géne est une référence a4 une opération primitive de traitement d’images (médian, combinaison
linéaire, opérateur de texture de Laws, ...). Les primitives ont été choisies de telle sorte qu’elles puissent
a la fois traiter de 'information spectrale comme spatiale, car les classes d’étude s’étendent sur une large
portion d’image. La détection d’objets urbains (routes, batiments) est moins performante qu’attendue
par rapport a des objets spectraux plus simples (comme ’eau), d’aprés les auteurs, & cause d’un jeu
d’apprentissage de taille trop faible.

La recherche en algorithmique génétique porte sur I’optimisation de modéles existants simples, soit
statistiques (réseaux de neurones, primitives de classification) soit mathématiques comme par exemple
les modeéles GSM® dans lesquels on optimise les termes dans les équations ou 'ordre du modéle [Samad-
zadegan et al., 2000].

Plus récemment, [Chemin et al., 2005] s’est intéressé a la découverte d’un modéle de prédiction
de I’évapotranspiration de cultures en comparant deux images satellitaires prise dans un intervalle de
temps relativement faible. Comme ce type de modéle est clairement non-linaire, & cause des nombreux
paramétres environnementaux qui interviennent dans I’équation, un algorithme génétique a été étudié,
ainsi qu’une fonction fitness adaptée, basée sur un modéle atmosphérique comme pression sélective. Enfin,
signalons une étude originale sur la localisation de ’oeil des cyclones depuis 'imagerie satellitaire [Yip
et Wong, 2004|. La rapidité de prédiction étant de rigueur pour ces cas, un algorithme génétique a été
préféré face a la lourdeur des catégorisations habituelles, afin de donner une solution précise au probléme
en 12 secondes. Les individus génétiques modélisant des paramétres spécifiques de la spirale cyclonique
ont permis 'amélioration de la précision par rapport aux algorithmes existants dans ce domaine.

1.5.2 Apprentissage par programmation génétique

En programmation génétique (PG), le principe est strictement le méme qu’en algorithmique géné-
tique, mais les individus sont ici des fonctions, par exemple encodées en LISP [Koza, 1992]. Les expressions
LISP sont des expressions symboliques permettant de traduire les fonctions sous forme de listes imbriquées
(aussi communément représentées sous formes d’arbre syntaxique), par exemple :

fonction (argument,, argumenty, ..., argument,) (1.6)

Dans les premiers travaux, Koza définit un ensemble de fonctions primitives et de terminauz, consti-
tuants les seuls termes possibles de ces expressions, ainsi qu’un type de retour unique. Les fonctions
primitives sont des fonctions booléennes, arithmétiques ou des structures de controle (conditionnelle,
boucle, ...). Les terminauz sont des variables d’entrées, des constantes ou des fonctions sans argument
mais avec effet de bord. Le mécanisme d’évolution par croisement consiste & échanger des sous-arbres,
éventuellement associés & une pondération permettant 1’échange plus rare de feuilles que de sous-arbres
de taille plus importante. Les mutations correspondent & la modification de la valeur ou de la fonction
d’un noeud, et la fonction d’évaluation assure une pression sélective sur les individus.

3 Satellite Pour I’Observation de la Terre

4Ang., China-Brazil Earth Resources Satellite

5Les Generic Sensor Models sont des modéles mathématiques de capteurs ou de caméras, dont les mesures sont inter-
prétées comme des polygones, sous-ensembles du plan d’étude, a modéliser.
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La programmation génétique (PG) est surtout utilisée pour la détection de formes. On peut notam-
ment citer les travaux de Harris [Harris et Buxton, 1996] ou de Daida [Daida et al., 1996] dans lesquels un
individu est un programme s’exécutant sur une fenétre 3x3 ou 5x5 de I'image et devient un détecteur de la
différence de contraste entre deux pixels de cette fenétre. D’autres résultats ont été obtenus en détection
de contour, en utilisant le langage de spécification EASEA [Collet et al., 2000; Bolis et al., 2001] pour
créer des animats-détecteurs.

Cette technique a déja été utilisée dans la classification d’images et le traitement d’images satelli-
taires. On peut citer [Robilliard et Fonlupt, 2001], [Valigiani et al., 2004] ou [Fonlupt et Robilliard, 2000]
qui ont utilisé cette approche pour la résolution de ce que ’on nomme le probléme inverse PAR (ang.,
Photosynthesis Available Radiation). Ce type de probléme cherche & modéliser une fonction représentant
certaines caractéristiques du milieu étudié, ici le nombre de photons disponibles pour la photosynthése
en milieu marin, grace & l’étude du signal percu par les capteurs. Les auteurs présentent la premiére
application de la PG au probléme PAR. Avec une population de 5000 individus, les opérateurs (+,—,%,/)
et une profondeur d’arbre maximale de 10, les auteurs obtiennent un résultat corrélé & 81% avec ceux
d’un algorithme employé par la NASA [Robilliard et Fonlupt, 2001]. Comme montré dans article, sans
un algorithme adapté, cette technique est trés sensible au sur-apprentissage. De plus, I'application du
modeéle & des données bruitées, comme c’est souvent le cas en télédétection, reste relativement difficile.

Ross [Ross et al., 2002] se donne pour objectif d’identifier la présence de trois minéraux distincts a
I’aide du vecteur de réflectance d’un pixel donné sur des images hyperspectrales. Le langage utilisé est
plus puissant que dans le cas précédent : en plus des opérations de base (4, —, *, /, <, <, > et >),
des opérateurs min, maz, If ... Then ... Else ainsi que d’autres calculant la moyenne et la déviation
standard sont employés. Les auteurs ont pu obtenir des classifieurs capables de fonctionner sur des zones
dans lesquels les minéraux sont mélangés. Plutot que de référencer chaque signature spectrale, la PG
a permis de caractériser la signature d’un minéral dans le contexte des autres signatures. Néanmoins,
aucun résultat n’est présenté sur la capacité de généralisation de tels classifieurs, par exemple avec des
tests sur d’autres zones ou d’autres types de région.

1.6 Découverte de classifieurs par renforcement

Un systéme par renforcement est un systéme d’apprentissage supervisé qui fonctionne en collabo-
ration avec un environnement externe, représentant le probléme & résoudre [Booker et al., 1989]. Le
systéme communique avec I’environnement par ’échange de messages et s’améliore en percevant des pé-
nalités ou des récompenses déterminées par son comportement au sein de cet environnement. Les messages
permettent au systéme de lire I’environnement par ses détecteurs ou capteurs et d’agir sur cet environ-
nement par ses effecteurs. Le fait que le systéme n’a besoin que d’une réponse positive ou négative de
Penvironnement constitue la part de renforcement de apprentissage (apprentissage par renforcement).

1.6.1 Le cas des réseaux de neurones

Dans le cadre des réseaux de neurones, on peut signaler un algorithme important qui est celui
de 'apprentissage par pénalité-récompense (ARP, Associative Reward Penality) de Barto, Anderson et
Anandan [Barto et al., 1985]. Les deux blocs de base de cet algorithme sont :

— le bloc de recherche associative (ASE, Associative Search Element), qui utilise une méthode sto-

chastique pour déterminer les relations qu’il peut y avoir entre les entrées et les sorties du réseau,

— le bloc d’évaluation adaptatif (ACE, Adaptative Critic Element), qui apprend & donner une pré-

diction correcte de la future récompense ou punition.

La réponse externe est un signal binaire, valant 0 si le systéme est dans le domaine de validité, —1
sinon. Appliqué a la télédétection, le domaine de validité est, par exemple, une image classifiée par un
expert. Concernant la réponse, le systéme recoit la valeur 0 lorsque la classe trouvée correspond & celle
de 'expert et —1 sinon. Le principe général se découpe en trois étapes :

— effectuer une propagation dans le réseau pour obtenir une décision de classification ainsi que la

prédiction de la récompense correspondante,
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— calculer ’erreur entre la prédiction et la récompense finalement obtenue,

— réajuster les poids des connexions en conséquence.

Barto et Anandan prouvent dans [Barto et Anandan, 1985] la convergence dans le cas de sorties
binaires représentant un ensemble de motifs linéairement indépendants. Cependant, il semblerait qu’il
s’agisse d’un systéme difficile & mettre en place, & cause des nombreux paramétrages a effectuer.

1.6.2 Le cas des systémes de classifieurs

Les systémes de classifieurs (SC, [Holland, 1975; Goldberg, 1989]) comptent parmi les méthodes
évolutives les plus anciennes puisqu’on en trouve trace dans [Holland et Reitman, 1978] et méme dans
[Holland, 1971] si l'on en croit I’historique de [Wilson et Goldberg, 1989]. Ils permettent de résoudre
des problémes combinatoires difficiles (NP-complets) au méme titre que les algorithmes évolutionnaires,
les animats® ou les colonies de fourmis. Comme eux, ils sont évolutifs et constituent une technique
d’apprentissage automatique.

Les systémes de classifieurs manipulent des classifieurs, c’est-a-dire des régles lisibles par un étre
humain, indiquant pour une situation donnée le comportement que doit suivre le systéme. Un exemple
simple de classifieur est le suivant : « Si <case Nord> contient <nourriture> Alors <avancer Nord> ». La,
partie « <case Nord> contient <nourriture> » est nommée <condition> et la partie « <avancer Nord> »
est appelée <action>. Le systéme complet manipule un ensemble de classifieurs (appelé population dans
la terminologie génétique ou base de classifieurs dans la terminologie des SC). Un SC évolue dans un
environnement externe au systéme (le probléme a résoudre) : dans ’exemple donné, I’environnement est
un labyrinthe. Chaque classifieur de la base est supposé correspondre & un certain nombre d’événements
provenant de ’environnement et y réagir. Lorsqu’un classifieur est sélectionné car sa condition correspond
al’événement courant de I’environnement, on parle d’activation (ang., matching) de ce classifieur. Celui-ci
est alors dit actif ou activé. L’opérateur qui calcule cette activation est nommeé opérateur d’activation.

Il n’y actuellement en littérature aucun article sur les SC concernant directement la télédétection.
On peut toutefois citer quelques études approfondies en classification de problémes réels (ang., real-world
problem). Llora [Llora et Goldberg, 2003] étudie certaines hypothéses de généralisation par rapport au
sur-apprentissage en présence de données bruitées. Bernad6-Mansilla [Bernadé-Mansilla et Garrell-Guiu,
2003] présente un systéme nommé UCS qui construit directement une liste de classifieurs activés de
maniére plus efficace. En moyenne, la performance du systéme présenté est comparable & XCS [Wilson,
1995], un SC trés connu dans ce domaine que nous allons décrire dans le chapitre suivant, tout en
donnant des bases de connaissance comprenant moins de régles (on observe une réduction de 1’ordre
de 40 & 60%). Néanmoins le systéme ne peut manipuler que des chaines binaires. Des efforts ont été
produits pour ameéliorer la qualité de classification pour des problémes réels. Le systéme EpiCS [Holmes
et al., 2000] propose une nouvelle méthode de sélection des exemples d’apprentissage, adaptée & partir
de la technique du bootstrapping, visant & inclure des exemples aléatoires pour augmenter la capacité de
généralisation de l’algorithme. Une autre étude [Bagnall et Cawley, 2003] a été réalisée avec I'une des
bases de 'UCI KDD7 concernant la couverture forestiére (10 variables continues, 2 attributs qualitatifs
a découvrir comprenant respectivement 4 et 40 valeurs distinctes, 44 attributs prédictifs binaires, 581000
exemples). L’algorithme XCS a été comparé a huit autres classifieurs (deux & vecteur support, trois
connexionnistes et trois inductifs). Il a été montré qu’XCS pouvait battre les deux classifieurs a vecteur
support (comprenant respectivement un noyau linéaire et un noyau gaussien) a condition qu’on y apporte
quelques perfectionnements. Ici, pour chaque exemple du jeu de données, seuls 2 attributs valaient « 1 » sur
les 44 attributs présents. Lors du croisement, il était alors possible de produire des classifieurs incorrects
qui n’étaient activés par aucun exemple. Les auteurs ont alors modifié 'opérateur en conséquence pour
ne produire que des enfants (ang., offsprings) valides. Le choix de la représentation est donc fortement
dépendante du probléme a résoudre. On peut souligner que dans notre cas, ce probléme d’attributs factices

6Tes animats (abréviation d’animal et robot) appartiennent au paradigme nommé wie artificielle et non au calcul évolutif.
Cet axe de recherche posséde ses propres conférences et ses propres notions comme par exemple la robotique évolutive (ang.,
evolutionary robotics).

"Knowledge Discovery in Databases Archive, University of California Irvine, http ://kdd.ics.uci.edu/
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n’entre pas en ligne de compte car tous les attributs spectraux sont renseignés.

Nous citons enfin quelques-uns de nos travaux, consacrés a l’application des systémes de classifieurs
en télédétection, que nous détaillerons au cours de cette thése [Korczak et Quirin, 2003a; Quirin et al.,
2004; Quirin et Korczak, 2005a; Quirin et al., 2005].

1.7 Conclusion

Nous venons de retracer ici de nombreuses méthodes d’apprentissage supervisés, ainsi que le cadre
de la découverte de régles de classification pour le traitement d’images de télédétection. Peu de travaux
ont été consacrés a 'apprentissage par renforcement en télédétection, peut étre & cause de leur lourdeur
supposée (ils intégrent une composante AG a eux seuls) ou a cause du manque d’intérét dans ce domaine.
Cependant, ces systémes nous intéressent profondément. Le chapitre suivant est, pour cette raison, consa-
cré entiérement & la description en profondeur des systémes de classifieurs. Nous pensons que pour faire
face a la complexité des données, une méthode évolutive semble plus robuste que les autres. Concernant
les critéres de représentation de connaissance et de compréhensibilité, nous justifions dans cette thése, a
chaque fois que cela est nécessaire, les choix que nous avons retenus.



20

CHAPITRE 1. ETAT DE L’ART



Chapitre 2

Fondements des systémes de classifieurs

2.1 Introduction

Ce chapitre a pour double-réle de présenter un état de I’art de ces systémes, peu connus et peu usités
méme 30 ans aprés leur création en 1975, mais aussi d’installer les principes fondamentaux des systémes
de classifieurs qui sont utiles a la fois pour ’état de I’art et pour le reste de cette thése, car de nombreuses
notions sont nécessaires pour appréhender les améliorations apportées depuis cette date. Cette partie,
plus théorique, n’est que peu ponctuée de références a leur application en télédétection & cause du calme
plus prononcé de la recherche dans ce domaine. Pour preuve, aucune application en traitement d’images
ou en télédétection n’a été présentée lors du principal cycle de conférences sur les systémes de classifieurs
IWLCS!.

Le chapitre est structuré de la fagon suivante. Nous posons dans un premier temps les fondements et le
principe des systémes de classifieurs. Nous détaillons ensuite 'interaction de ’algorithmique génétique au
sein du systéme qui permet ’émergence de nouveaux classifieurs, ainsi que leur représentation classique.
Les composants principaux de ces systémes sont ensuite décrits, ainsi qu’un opérateur particulier, le
covering operator. Enfin, nous donnerons quelques exemples de tels systémes, notamment le systéme
XCS, les systémes flous, les systémes & base de S-classifieurs et nous terminerons par présenter leurs
principales améliorations.

2.2 Systémes LCS

11 existe une classe particuliére de SC qui possédent la capacité d’apprentissage symbolique, qui nous
intéressent dans le cadre de cette thése et qui représentent 'un des points importants de la recherche
dans ce domaine actuellement. Cette classe de SC sont nommeés LCS (ang., Learning Classifier Systems).

Holland [Holland, 1986] résume ainsi les caractéristiques qui distinguent les LCS des SC :

— L’activation de chaque classifieur dépend de paramétres qui sont modifiés dans le temps, pour mi-
mer l'acquisition d’expérience. Cette expérience est apportée par ’environnement dont les classi-
fieurs pergoivent une récompense (ang., feedback), c’est-a-dire une pénalisation ou une gratification
en fonction de leur comportement dans ’environnement.

— Les classifieurs sont regroupés dans une base qui est modifiée au cours du temps, par exemple
par génération de nouveaux classifieurs ou par suppression, ajout ou recombinaison des parties
<condition> et <action> des classifieurs existants. Cette génération de nouveaux classifieurs est
réalisée & ’aide d’un algorithme génétique.

Les LCS se démarquent des autres techniques d’apprentissage automatique comme les réseaux de

neurones ou la programmation génétique par leur aptitude & Iapprentissage collaboratif : un certain
nombre de classifieurs vont servir a créer une chaine compléte dont ’ensemble constituera une solution

Hnternational Workshop on Learning Classifier Systems. Les huit conférences de 1992 4 2005 ont été examinées
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possible & un probléme, se passant 'information d’un maillon & I'autre sous forme de messages & inter-
préter. Concernant le systéme XCS, ces notions sont précisées dans les travaux de Butz [Butz et Wilson,
2002]. Selon la taille de cette chaine, ’apprentissage, 1ié au type d’environnement étudié, sera nommé
single-step ou multi-step.

Dans un apprentissage de type single-step, le but est de modéliser une fonction en vue de faire de
la classification ou de la régression. En exploitation, le probléme est résolu en une seule étape grace a
I’application d’un seul classifieur qui contient en lui-méme la décision de classification. En apprentissage,
I’activation du classifieur est indépendante des états précédents du systéme et la récompense d’un classi-
fieur est percgue a la fin de son application sur les exemples & apprendre. Les problémes de classifications
sont typiquement single-step lorsque ces exemples sont indépendants entre eux.

Encodage des éléments de ’environnement

Nom Nourriture Obstacle Vide
Elément F G 0 Q
Codage 110 111 010 011 000

. up-left

F..
Classifieur typique :
E?j F . (.) . Q o

110 000 (...) 000 o011 o010 : 01

Classifieur générique :
F/G : up-left
11 ### (o ..) ### #4# #4101

Vue
locale

Fia. 2.1 - Figure de gauche : représentation de ’environnement « Wood2 » correspondant & un labyrinthe.
Figure de droite : en haut, le tableau d’encodage des symboles, au milieu, un classifieur typique et en
bas, un classifieur générique résolvant le labyrinthe.

Dans un apprentissage de type multi-step, un message provenant de I’environnement (vision locale
du systéme plongé dans l’état courant) passe d’un classifieur a ’autre en activant le classifieur le plus
approprié a chaque fois. Le tout forme une chaine d’activations. Dans des environnements complexes, cette
chaine peut étre dynamique et dépendre de I’évolution de ’environnement lui-méme au cours du temps.
En apprentissage, la récompense peut étre pergue & n’importe quelle étape et les messages d’activation
dépendent des étapes précédentes. Ce type d’environnement s’applique, par exemple, aux problémes de
robots se déplagant dans des labyrinthes. Dans le probléme présenté sur la figure 2.1, un robot (symbole
"x") est plongé dans un labyrinthe pour lequel il n’a qu’une vue locale. Son but est d’aller chercher
de la nourriture (symboles "F" ou "G") en évitant les obstacles (symboles "0" ou "Q"). Les symboles
"." représentent les cellules vides. Le robot posséde un certain nombre de classifieurs qui indiquent la
direction du prochain mouvement en fonction du contenu de son environnement, local. Ces classifieurs sont
encodés en parcourant les cellules dans le sens des aiguilles d’'une montre, & partir de la cellule supérieure
gauche, selon le tableau d’encodage présenté sur la figure 2.1. Un classifieur typique est présenté sous le
tableau. Un nouveau symbole est introduit (#), représentant un « 0 » ou un « 1 ». Le symbole “#” est
un caractére joker (ang., wildcard) représentant et pouvant activer tout autre autre symbole de A. On
Pappelle aussi le « don’t care symbol » [Wilson, 1994]. Le but du systéme est de proposer les classifieurs
les plus génériques possibles, par exemple en encodant la nourriture par « 11# » plutét que par « 110 »
ou « 111 ». Un tel classifieur est présenté sur la figure.

La modélisation du processus de classification des données présentes sur les images hyperspectrales
fait plutot appel a Papprentissage de type single-step, bien qu’il soit possible de considérer les données
hyperspectrales comme un environnement de type multi-step. Dans ce cas, par exemple, 'objectif serait de
découvrir un enchainement de classifieurs adéquats pour traiter les données temporelles. Comme de tels
systémes sont actuellement algorithmiquement hors de portée, nous nous concentrons dans nos travaux
sur les modeéles single-step.
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Le but pour un classifieur, tout comme dans la plupart des modéles d’apprentissage par renforce-
ment, est d’associer & chaque situation dans laquelle il est plongé la meilleure action possible. Chaque
association possible entre un message de I'environnement (ou stimulus) et I’action correspondante entre-
prise par le classifieur (son comportement) peut étre modélisée par un état. Le nombre d’états pour un
probléme complexe peut étre relativement grand : si chaque état est décrit par n attributs discrets, il y
a 2" états possibles lorsque les attributs sont binaires. Avec une représentation classique du type régle de
décision, pour pouvoir résoudre un probléme comprenant un grand nombre d’états, il faudrait disposer
d’un ensemble conséquent de régles, chacune associant un état avec une action donnée. La complexité al-
gorithmique d’une telle situation exploserait vite. L’intérét des classifieurs est qu’ils permettent d’associer
directement ’action désirée & la valeur des attributs plutdt qu’a ’état dans lequel se trouve le systéme.

Avant les systémes de classifieurs (LCS) de [Holland, 1971] et 'utilisation des algorithmes génétiques,
les systémes de classifieurs pouvaient étre vus comme un systéme de production au sens de [Baum et
Durdanovic, 2000] puisqu’ils définissent une architecture reposant sur une base de régles. Le schéma
trés simple d’'un environnement qui produit un message activant les conditions d’une régle donnée, puis
I’émission de I’action correspondante dans ce méme environnement évoque fortement le principe général
d’un moteur d’inférences. [Post, 1943] a montré que de tels systémes, nommés Post Production System,
étaient calculables en un temps polynomial. Ces régles, sous la forme If ... Then ... Else dans des langages
de programmation de haut niveaux et utilisés par les experts dans les systémes a base de connaissances
[Marchand et Damper, 2000], présentent ’avantage d’étre un modéle formel de programme universel.

2.3 Description des classifieurs

Selon Holland, un classifieur est une régle représentant une connaissance du systéme au niveau le
plus bas. Il posséde une ou plusieurs conditions (formant la partie <condition>) et une seule action
(formant la partie <action>). La partie <condition> permet de déterminer par évaluation (ou matching)
I’ensemble des messages qui activent la régle, et la partie <action> contient le message que le systéme
va émettre lorsque la partie <condition> est satisfaite.

Plus formellement, on a la forme suivante :

<condition> : <action> =cy,C2,...,Ciy...,Cpn: (2.1)

ot ¢; (i <netn > 1) est 'une des valeurs binaires (en représentation binaire) formant la partie
<condition> du classifieur et a la partie <action>.

Chacun des membres ¢; de la partie <condition> est une chaine de longueur k fixée définie sur un
alphabet .4 donné. Dans la plupart des systémes de classifieurs appliqués, on a A = {0, 1, #}.

La partie <condition> permet de coder des informations élémentaires, comme une couleur, un
spectre, une forme ou tout autre constante. Elle est utilisée lors de 'activation du systéme par les mes-
sages d’entrée, et correspond aux conditions & remplir pour rendre le classifieur actif. Les valeurs ¢; sont
entendues comme des conjonctions de la partie <condition>. Il n’y a pas de disjonctions dans le modéle
traditionnel des classifieurs.

La partie <action> est le message de sortie correspondant, codant ’action a effectuer lorsque le
classifieur est activé. Il s’agit généralement d’une action basculant le systéme dans 1’état suivant (en
modifiant ou non l’environnement externe), par exemple, un changement de cap pour un robot ou la
capture d’une nourriture. En télédétection, il s’agit le plus souvent de l'attribution d’une classe & un
pixel.

Le but d’un systéme de classifieurs est de modéliser entiérement la fonction (ang., mapping) X x A,
avec X représentant les messages d’entrée et A les actions correspondantes qui maximisent la récompense
recue de ’environnement.

On appelle spécificité d’un classifieur, le nombre de valeurs instanciées (différentes du symbole “#”)
d’une condition. S’il n’y a pas de joker, la spécificité est maximale et vaut la longueur de la condition et
si tous les caractéres sont des jokers, la spécificité est nulle. Lorsque, pour deux classifieurs, I'un a une
spécificité plus faible que 'autre, et que les valeurs instanciées sont toutes identiques, on dit que le premier
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englobe (ang., subsume) le deuxiéme. Dans l’exemple suivant, la base de régles BR1 est parfaitement
équivalente, au sens de la spécificité, aux deux bases BR2 et BR3, mais pas a la base BR4.

001010 : 11100
BR1 101010 : 11100
001110 : 11100
BR2 #01010, 001110 : 11100
BR3 001410, 101010 : 11100
BR4 #01410 : 11100

La spécificité est importante au moment des manipulations des classifieurs par ’algorithme génétique,
pour controler le niveau de généralisation que ’on rajoute a chaque fois : ceci peut notamment étre controlé
au niveau de l'opérateur de croisement génétique.

Le symbole “#” est présenté par [Schaeffer et Schuurmans, 1989] comme pouvant améliorer la per-
formance des régles. Il permet 1’économie de classifieurs dans le systéme et ’augmentation du nombre
de solutions par classifieurs. De plus, la performance du systéme d’apprentissage est améliorée car les jo-
kers autorisent les notions de principes généraux et d’exceptions [Goldberg, 1994]. Enfin, ils introduisent
une notion de hiérarchisation, dont [Riolo, 1988] a montré 'influence lors de I’apprentissage (notion de
niches).

A moins de connaitre I’espace de solutions, les régles initiales pour I’apprentissage (dont 1’ensemble
est nommé base de connaissance initiale du systéme) ne sont introduites ni par le programmeur, ni
par un expert du domaine. L’algorithme de sélection de ces régles joue donc un roéle capital. Pendant
I’apprentissage la compétitivité des hypothéses introduites par la partie <action> des régles est totalement
déterminée par leurs performances passées et leurs spécificités [Richards, 2001].

D’autres représentations ont été introduites ou testées depuis. En plus de la représentation classique
(binaire, de type <condition>/<action>), on peut citer les représentations continues (chaque condi-
tion est une séquence de valeurs réelles ou d’intervalles de réels), les expressions LISP [Lanzi, 1999b],
celles dont les classifieurs ne sont activés qu’en fonction de la valeur d’un registre (de la forme <condi-
tion> <registre> : <action><registre>), et enfin avec messages auto-réinjectés, correspondant au cadre
formalisé par les travaux initiaux de Holland.

2.4 Approches pour la base de connaissances

La base de connaissances, manipulée par le systéme sous la forme d’une population de classifieurs,
n’est pas une simple liste de classifieurs. Principalement deux approches ont été étudiées.

— L’approche de Pittsburgh [DeJong, 1988] considére que la population est un ensemble de bases de
régles (ang., rule-sets). Chaque individu est donc un systéme de production & part et la population
évolue en hybridant et en sélectionnant la meilleure base de régles.

— L’approche de Michigan [Holland, 1986] est ’approche historique. Elle considére, quant a elle, que
chaque régle est un individu isolé. Les régles sont évaluées de maniére individuelle par ’algorithme
génétique et la population évolue en croisant ses régles entre elles. Cette approche est non seulement
la plus classique, la plus documentée dans la littérature, mais aussi celle qui donne en général les
meilleurs résultats [Holland, 1986; Booker et al., 1989].

L’approche retenue doit étre choisie précautionneusement en fonction du probléme & résoudre. Il
existe cependant des difficultés dans les deux cas [Carse et Pipe, 2001] : dans les systémes de type
Michigan, I’équilibrage entre coopération et compétition des individus est délicat, mais la représentation
de la solution par des individus indépendants est efficace pour beaucoup de problémes. Dans les systémes
de type Pittsburgh, les individus sont des entités plus complexes et sont plus difficiles & manipuler par
les opérateurs génétiques.

Une troisiéme approche, moins courante, est une approche d’apprentissage de régles itératives [Ven-
turini, 1993]. Les chromosomes codent des régles individuelles et & chaque cycle de I’algorithme génétique
une nouvelle régle est adaptée puis ajoutée a la base de régles.
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2.5 Composants d’un systéme de classifieurs

Au sein d’un systéme de classifieurs (LCS), un AG ne représente qu’une simple composante : le
systéme utilise le paradigme évolutif pour créer des individus et adapter leur comportement & un en-
vironnement qui peut étre modifié au cours de l'apprentissage. La figure 2.2 présente une illustration
schématique des différents composants du systéme de classifieurs étudié par [Wilson, 1994]. Son fonction-
nement est détaillé dans la section suivante. Il se compose des parties suivantes :

— L’environnement. Souvent présenté comme une région de ’espace de recherche dans laquelle évolue
les classifieurs, il formalise le probléme & résoudre. Il évolue et se modifie de maniére autonome
mais peut interagir avec le LCS & l’aide d’un systéme de messages.

— Une interface d’entrée composée de détecteurs. Ils permettent de traduire en messages d’entrée la
situation courante et les événements que ’environnement a créé dans 1’état courant.

— Une interface de sortie composée d’effecteurs. Ils permettent au LCS d’interagir avec ’environne-
ment en produisant certaines actions, pilotées par les messages de sortie du systéme.

— Plusieurs listes de messages dont 'intérét et 'utilisation dépendent des particularités qu’apportent
leurs auteurs aux LCS considérés. On peut toutefois considérer que la présence des trois composants
suivant est invariante :

— une base de classifieurs [P]; (ang., Population Set). Appelée pool de classifieurs, elle contient la
population de classifieurs au départ de ’algorithme et représente les connaissances du systéme
a linstant ¢. Plus formellement, si 'environnement est markovien, la transition de [P]; & [Pi4+1
est homogéne?,

— une liste de messages [M]; (ang., Match Set), contenant tous les messages actifs, c’est-a-dire
tous les messages qui coincident avec le message d’entrée courant du systéme,

— une liste d’actions [A]; (ang., Action Set), contenant les parties <action> (voir la section 2.3)
des messages actifs et qui seront utilisées par le LCS pour déterminer le message & envoyer aux
effecteurs.

2.5.1 Systéme de répartition de crédits

La sélection et la manipulation des classifieurs dans les différentes listes fait appel & deux algorithmes :

— un algorithme de répartition de crédits distribuant des récompenses aux classifieurs efficaces et

pénalisant les autres,

— un algorithme génétique permettant I’évolution de la base de classifieurs.

Le systéme de répartition de crédit (ang., bucket brigade algorithm) a été décrit par Holland dans
[Holland, 1985] et utilise le principe de la vente aux enchéres : les classifieurs efficaces sont récompen-
sés tandis que les autres sont éliminés. Dans cet algorithme, il y a deux éléments principaux : la vente
aux enchéres et la chambre de compensations. Lorsqu’un message provenant des détecteurs déclenche
des classifieurs, ces derniers s’inscrivent pour une vente aux enchéres. Chaque classifieur y propose une
enchére, généralement proportionnelle & sa force (ang., strength). La force S d’un classifieur est essentiel-
lement calculée a partir de la fonction d’évaluation. Celui qui emporte la vente va produire un message
correspondant a ’action & effectuer, action qui va étre émise par le systéme. L’action et donc le message
peut étre bénéfique ou non a I’environnement : selon le cas on augmentera ou diminuera la force du clas-
sifieur correspondant. Puis, il passera par la chambre de compensation, en payant de maniére équitable
les classifieurs actifs qui n’ont pas gagné (ceux qui concordent avec le message des détecteurs, mais qui
n’ont pas été sélectionnés) et en perdant une partie de sa force. Cette récompense qui remonte le long de
la chaine des classifieurs perdants a donné le nom a l’algorithme (dit des porteurs d’eau).

2.5.2 Interactions entre composants

L’ensemble des classifieurs qui sont mis en compétition pour controler le systéme et optimiser la
réponse de I'environnement sont rassemblés dans une liste ([M]; dans la figure 2.2). Cette réponse est

2Le pool au temps t + 1 est entiérement déterminé de maniére probabiliste par le pool au temps t.
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F1G. 2.2 — Modéle simplifié d’un systéme de classifieurs [Wilson, 1994].

donnée sous la forme d’une récompense (ang., reward) ou d’une pénalisation basée sur la performance ou
I’échec de I'action courante du systéme vis & vis de ’environnement. Du point de vue du systéme, cette
récompense se cumule au crédit (ou force) des classifieurs ayant généré I'action et détermine, au fil de
P’apprentissage, I'influence de chaque classifieur dans la compétition. A priori, les individus sont créés a
I'initialisation de I’algorithme et seule ’évolution de la force de chacun d’eux permet de les distinguer par
la suite. L’apprentissage ne pourrait donc renvoyer de résultats satisfaisants sans qu’un processus évolutif
renouvelle la population. Ce role est tenu par un algorithme génétique, couplé a la base [P], qui permettra
de créer de nouveaux classifieurs par croisement ou mutation & partir des meilleurs, et d’oublier les plus
mauvais.

Pour pouvoir évaluer la connaissance assimilée par le systéme et guider la génération des nouveaux
classifieurs, le LCS utilise une fonction d’évaluation qui est déterminée par le probléme & résoudre. Dans
la plupart des cas, elle correspond directement & la réponse donnée par I’environnement. La performance
des classifieurs est jugée en regard de leur degré de contribution & la résolution du probléme.

[Richards, 2001] distingue deux modes dans lesquels peuvent se trouver un LCS & un instant ¢ donné :
le mode apprentissage (ang., Learning Mode) et le mode application (ang., Application Mode). Lorsque le
systéme n’est pas en train d’apprendre, il recoit de I'information de I’environnement via ses détecteurs,
détermine le classifieur et 'action adaptée puis exécute cette action dans I’environnement. Ce processus
est nommé Application Mode. 1 algorithme correspondant est présenté dans la figure 2.3.

La base de classifieurs peut étre vue comme une population d’hypothéses a tester. Une hypothése,
ici un classifieur, est sélectionnée lorsqu’elle est appropriée a la situation courante (matérialisée par les
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1. Perception par les détecteurs d’un message de I’environnement

2. Conversion dans ’alphabet du systéme, assemblage en messages environne-
mentaux

Comparaison avec les parties <condition> du pool [P];

Transfert des classifieurs actifs du pool [P]; vers le pool [M];

Création du pool [A]; & partir d’une stratégie de sélection (roulette, ...)
Création d’un message M, a partir de ’action gagnante

Emission du message M, sur les effecteurs qui modifient I’environnement

® N o w

Envoi d’un message au systéme de répartition des crédits afin de payer les
gains ou prélever les charges des classifieurs

Fia. 2.3 — Application Mode : interactions avec ’environnement.

messages pergus par le systéme). Cette pertinence ou compétitivité du classifieur est déterminée par la
valeur de la force du classifieur dans les cycles antérieurs de ’algorithme et par sa spécificité par rapport au
message courant. Au cours du temps, 'algorithme génétique provoque I’échange d’information acquise par
les classifieurs. Ils sont sélectionnés & ’aide d’une fonction d’évaluation et d’un opérateur spécial, appelé
le Triggered Genetic Algorithm Operator (TGAQ). Son role est de lancer les opérateurs de croisement et
de mutation génétique sur les classifieurs & intervalles réguliers.

La figure 2.4 présente le fonctionnement détaillé des interactions entre les composants principaux
et la circulation des messages dans le systéme. Les messages sont émis par l’environnement (en haut de
la figure) vers le systéme, qui les traite et les stocke dans une base de classifieurs ([P];). L’opérateur
TGAO, que nous venons de décrire, s’active alors sur cette base : il représente la source de création des
nouveaux classifieurs et il est basé sur un algorithme génétique (voir la figure 2.5 qui présente le mode
apprentissage). Le systéme doit alors choisir une action & émettre dans ’environnement. Pour cela, un
mécanisme de répartition des crédits permet d’élire I'action gagnante, qui paie une enchére aux classifieurs
non activés de la facon décrite dans la section précédente. Dans le cas ot aucun classifieur ne pourrait
répondre au stimulus envoyé par ’environnement, ou lorsque la base de classifieurs ne répond pas a
certains critéres déterminés par un opérateur spécial nommé TCDO (ang., Triggered Cover Detector
Operator), un nouveau classifieur est créé de maniére aléatoire. Une action est dans tous les cas émise
vers ’environnement qui gratifie ou pénalise les classifieurs activés.

L’évolution naturelle du systéme de classifieurs conduit & remplacer les classifieurs par défaut les plus
généraux par des classifieurs plus spécifiques correspondant aux situations particuliéres. Le développement
de régles générales et spécifiques, permet au systéme d’apprendre avec habilité et flexibilité, traitant les cas
inédits grace aux régles les plus générales et les exceptions par les régles les plus spécifiques. Ce principe
de classifieurs hiérarchisés est connu dans la littérature sous le terme de default hierarchies [Holland et al.,
1986]. Lorsque le nombre de réponses (ang., feedback) positives provenant de I’environnement augmente,
on considére que le nombre d’hypothéses validées augmente également et que les classifieurs, simples
hypothéses au départ, sont devenus des lois éprouvées.

2.6 Le Covering Operator

Si la liste [M] est vide, c’est-a-dire lorsqu’aucun classifieur de [P] n’est activé par le message m =
{messeny 0, ..., meSSeny n} des détecteurs, le reste de ’algorithme ne peut s’appliquer, car cela empéche
le choix d’une action et son émission dans ’environnement. Dans ce cas, I’environnement risque de se
stabiliser : le LCS serait immobilisé dans un minimum local et, au mieux, la solution finale ne serait
pas satisfaisante. [Wilson, 1994] propose plusieurs stratégies de détection de telles situations et propose
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F1G. 2.4 — Interactions détaillées des messages au sein d’'un LCS. Les mécanismes qui sont dédiés a la
découverte des classifieurs sont placés dans des cadres sombres.

des méthodes de recouvrement d’une liste [M] valide, qu’il formalise dans un opérateur nommé Covering
Operator. Celui-ci intervient lorsque la liste est vide ou lorsque la force totale Spyy, de [M]; (somme des
forces S de tous les classifieurs de [M] & l'instant t) est inférieure & une fraction ¢ de la force moyenne des
classifieurs du pool [P]. Le role du Covering Operator est de créer un nouveau classifieur C' de la fagon
suivante :

— la partie <condition> est construite & partir du message m en y ajoutant un taux 04 fixé de

caractéres jokers (#),

— la partie <action> est choisie de maniére aléatoire,

— la force de C est équivalente a la force moyenne du pool [P].

C' est ensuite introduit dans [P] aprés avoir supprimé un classifieur en utilisant une procédure de
sélection eugénique lancée par l’algorithme génétique. Un nouveau pool [M]:11 est créé et 'algorithme
se poursuit de facon habituelle. A titre d’illustration, ¢ = 0.5 et 0y = 1/3 semblent étre d’aprés Wilson
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1. Initialisation du systéme de classifieurs (t=0)

2. Génération de la population initiale ([P]o)

w
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2.3)
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FiG. 2.5 — Learning Mode : algorithme général.

de bons paramétres pour résoudre un probléme de labyrinthe simple. Cet opérateur est un peu brutal
puisqu’il risque d’orienter le LCS vers un apprentissage par cceur et n’exploite pas les connaissances
déja apprises comme le fait I’algorithme génétique. Néanmoins, 'apparition de messages provoquant la
génération de pools de taille nulle est inévitable dans la plupart des problémes, et le Covering Operator
est vu comme un dernier recours. De plus, il permet de tester de nouvelles hypothéses (principe de
Pexploration) basées sur des messages authentiques, plutot que d’agir de maniére totalement aléatoire.

2.7 Le classifieur de Wilson (XCS)

Généralement, le paramétre de force est utilisé a la fois comme une prédiction de la future récompense
pergue et comme parameétre principal de la fonction d’évaluation. Wilson a remarqué que dans certains
cas, cette valeur de prédiction n’est pas adéquate lorsqu’elle est utilisée dans le calcul de la fonction
d’évaluation. Par exemple, ’environnement peut se trouver dans deux états distincts activant chacun le
méme classifieur et I'action appropriée dans chacun des cas peut étre différente de celle prévue par le
classifieur. Ce classifieur va alors acquérir une force correspondant a la moyenne entre une récompense
maximale et une pénalisation maximale. Ce phénoméne vient du fait que le classifieur n’est pas assez
spécifique pour distinguer les deux cas, mais il survit cependant car la fonction d’évaluation est basée sur
la prédiction de la récompense et non sur la précision de cette prédiction.

Pour résoudre ce probléme, I'algorithme XCS [Wilson, 1995] étend la famille des systémes de classi-
fieurs en associant plusieurs paramétres supplémentaires & chaque régle.

Le premier paramétre, p, est la prédiction de la récompense que XCS recevra s’il applique cette régle.
Le second paramétre, e, est ’erreur associée & cette prédiction, et le dernier paramétre F' représente la
fitness, une mesure de la précision de la prédiction utilisée dans I’algorithme génétique. Ce dernier est
implanté non plus sur la population de régles [P] (comme présenté dans les figures 2.2 et 2.4), mais
sur le Match Set [M], ce qui permet de découper le probléme en niches (ici un ensemble d’états de
Penvironnement activé par le méme ensemble de classifieurs) partageant les récompenses ce qui évite
qu’une niche dominante ne prenne le controle des décisions émises par le systéme, par rapport a une
autre niche. Une autre extension de Wilson concerne les macro-classifieurs. Cette notion ne fait pas
allusion & une représentation différente des classifieurs : il s’agit d’une technique algorithmique pour
réduire la complexité de calcul de l'activation des classifieurs par le ou les messages entrants. Dans des
problémes simples (multiplexeur, labyrinthe), les classifieurs ayant les mémes conditions et actions sont
légions. Wilson propose de ne garder qu’une copie par classifieur identique et d’incrémenter un autre
paramétre du classifieur, nommé numerosity, en fonction du nombre d’occurrences réelles du classifieur
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concerné. La différence de qualité est nulle par rapport & un LCS dépourvu de cette amélioration et cela
n’affecte pas les opérations génétique sur les classifieurs sous-jacents. On appelle population réelle une
base de classifieurs uniques et population virtuelle ’ensemble des classifieurs dupliqués en tenant compte
du paramétre de numerosity.

Signification Valeur idéale
Nombre de classifieurs dans la population 50
Taux d’apprentissage pour l'actualisation de la
fitness, de D'erreur, de la prédiction et de

I’estimation de la taille de I’ Action Set 0.2
Fraction de la fitness moyenne en dessous de
laquelle un classifieur peut étre supprimé 0.1

Triggered Genetic Algorithm Operator (TGAO) :
Nombre moyen de sélections dans I’ Action Set que
doivent avoir les classifieurs avant de déclencher 'AG 5
Covering Detector Operator (CDO) :

Fraction de la force moyenne du Match Set pour

déclencher le Covering Operator 0.1
Seuil d’erreur en dessous duquel la précision du

classifieur est fixée a 1 10
Durée de vie minimale d’un classifieur 20
Probabilité de croisement 0.8
Probabilité de mutation 0.15
Réduction de 'erreur lorsqu’un nouveau classifieur

est créé par 'AG 0.25
Reduction de la fitness lorsqu’un nouveau

classifieur est créé par 'AG 0.1
Prédiction initiale d’un classifieur 10.0
Erreur initiale d’un classifieur 0.0
Fitness initiale d’un classifieur 0.01

TAB. 2.1 — Significations et valeurs des principaux paramétres utilisés dans un classifieur de type XCS
[Wilson, 1994].

Le tableau 2.1 présente quelques paramétres intéressants associés & XCS et leurs valeurs idéales,
selon Wilson.

XCS a été testé dans des environnements single-step et multi-step. Dans les problémes de type
multiplezeur (single-step), Wilson a montré que la complexité du probléme en nombre de générations n’est
pas proportionnelle 4 la taille de I’espace de recherche mais au nombre de classifieurs génériques (nombre
de caractéres jokers non nul) nécessaires pour résoudre la tache. Ainsi, 'obtention d’une performance
maximale pour un probléme inscrit dans un espace de recherche deux cents fois plus grand a été pour
XCS seulement trois fois plus difficile en terme de nombre de générations et de taille de la population
finale [Wilson, 1995].

Dans [Wilson, 1998], Wilson introduit deux nouvelles optimisations qui permettent d’augmenter
sensiblement la qualité de la généralisation et les performances du systéme :

1. L’algorithme génétique croise et mute les classifieurs stockés dans la liste Action Set et non plus
ceux du Match Set. Le Match Set contient des classifieurs jeunes, dont ceux créés par le Covering
Operator, et qui risquent fortement de se faire éliminer & la génération suivante par l’algorithme
génétique. D’autre part, les conditions de ces classifieurs se ressemblent, ils y sont justement parce
qu’ils ont été activés par le méme message d’entrée. L’opérateur de croisement est donc inefficace,
seul 'opérateur de mutation pourrait étre utile. Des études ont montré que si le Match Set contient
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des classifieurs performants et précis pour toutes les actions possibles, les conditions de ces clas-
sifieurs sont différentes, ce qui produit fréquemment des enfants inadaptés aprés 'application de
lopérateur de croisement. En revanche, appliquer 'algorithme génétique dans 1’ Action Set, dans
lequel les parties <action> sont toutes identiques, produit de meilleurs résultats.

2. La seconde amélioration concerne les opérateurs génétiques eux-mémes. Aprés leur application, si
un classifieur fils posséde une condition englobée (ang., subsumed) par un classifieur déja existant
et donc possédant une spécificité plus grande, ce fils est remplacé par une copie du classifieur
englobant. Par exemple, supposons que la population contienne deux classifieurs « C1 :11## » et
« C2 :##+#+# » et que ces deux classifieurs ont la méme performance (I'erreur de prédiction est
la méme). C1, en étant plus spécifique que C2, va s’activer moins souvent que C2. Puisqu’il sera
sélectionné moins souvent, les occasions de réception d’une récompense lui seront plus rares et il
sera finalement éliminé par l’algorithme génétique (ce qui est souhaité). L’amélioration proposée
par Wilson raccourcit simplement le temps d’attente avant sa suppression. A cause de son effet sur
la base de classifieurs, cette optimisation peut étre considérée comme une mutation dirigée dans le
sens ou Ialgorithme génétique est contraint & ne produire que des enfants plus généraux (avec une
spécificité plus faible) que les parents.

2.8 Classifieurs et logique floue

Parmi les possibilités offertes par les systémes de classifieurs, une piste consistant & méler classifieurs
et logique floue a été explorée. Appelés LFCS (ang., Learning Fuzzy Classifier System, [Rendon, 1997]),
ces systémes sont capables de traiter des classifieurs requérant des variables continues et dont une inter-
prétation linguistique pourrait étre proposée. Cette classe d’algorithmes est connue dans la littérature
sous le nom générique de GFS (ang., Genetic Fuzzy System), parmi lesquels les systémes les plus so-
phistiqués sont sans doute les GFRBSs (ang., Genetic Fuzzy Rule-Based Systems) [Cordon et al., 2001;
Valenzuela-Rendon, 1991; Parodi et Bonelli, 1993]. L’intégration de la logique floue permet d’utiliser des
facteurs de certitude en langage naturel comme chaud, froid, sir, certain, peu str, etc. Concernant la
représentation de la connaissance exprimée par les classifieurs, elle peut étre considérée comme étant
divisée en :

— une base de régles (BR) qui regroupe I’ensemble des régles floues. L’utilisation de 'algorithmique
génétique pour apprendre de nouvelles régles nécessite d’avoir préalablement intégré dans la base
de données des fonctions d’appartenance floue. La littérature a considéré les trois types d’approches
possibles (voir la section 2.4) : approche de Michigan [Ishibuchi et al., 1999], ’approche de Pitts-
burgh [Hoffmann et Pfister, 1997] et ’approche itérative [Gonzalez et Perez, 1999]. Dans ’approche
de Pittsburgh, la représentation la plus couramment utilisée pour les groupes de classifieurs sont
les matrices relationnelles et les tables de décision. Dans le cas de 'approche de Michigan, les
classifieurs sont encodés sous la forme de simples listes de régles. Pour coder les régles indivi-
duelles, on emploie des chaines binaires de longueur fixe [Gonzalez et Perez, 1999] ou on utilise le
messy-coding (voir la section 2.9).

— une base de données (BD) qui contient la définition des facteurs d’échelle et des fonctions d’ap-
partenance de I’ensemble flou associé avec les termes linguistiques utilisés. Contrairement & la BR,
Papprentissage automatique d’une BD par algorithme génétique est plus délicat [Velasco, 1998]. En
effet, la représentation des composants d’'une BD et donc de I’espace de recherche est hétérogéne.
On préférera donc plutot utiliser des techniques d’optimisation (ang., tuning), consistant plus a
optimiser une BD existante qu’a en apprendre une nouvelle, c’est-a-dire & trouver les paramétres
optimaux pour les fonctions d’appartenance ou les facteurs d’échelle. Un tuning génétique est
possible. Les facteurs d’échelle sont paramétrés par un simple scalaire ou deux limites inférieure
et supérieure. Les fonctions d’appartenance, habituellement triangulaires [Carse et Pipe, 2001],
trapézoidales ou gaussiennes sont encodées dans le chromosome en utilisant de 1 & 4 paramétres
réels [Cordon et al., 2001].
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L’algorithme général de fonctionnement d’un LFCS différe peu de celui des LCS classiques. On y
ajoute simplement une fonction d’activation floue des messages entrant avec les classifieurs de la base,
ainsi qu’une conversion inverse (ang., defuzzification) au niveau des effecteurs pour les messages de sortie
[Valenzuela-Rendon, 1998 :

1. Les détecteurs percoivent les messages d’entrée de ’environnement. Ils sont encodés en messages
flous (les valeurs continues sont converties en valeurs floues prises dans un ensemble borné de valeurs
possibles) et ces derniers sont ajoutés a la liste de messages [£].

2. La base des classifieurs [P] est parcourue afin de trouver tous les classifieurs dont les conditions
sont satisfaites, complétement ou partiellement, par les messages de la liste [€]. Ces messages sont
placés dans la liste [M].

3. La liste [£] est vidée.
4. Les actions des classifieurs de [M] sont placés dans la liste [A].

5. Les effecteurs convertissent par defuzzification les messages flous de la liste [A] en valeurs de sortie
acceptables par ’environnement et y propagent ces valeurs.

6. La récompense de I'environnement est transmise aux classifieurs choisis dans la liste [A].

7. Un nouveau cycle débute.

Ce type de systéme permet d’utiliser des fonctions d’appartenance floue, autorisant l’approximation
des variables d’entrée du systéme, plutot que d’obliger une activation exacte comme dans le cas des LCS.
Malgré la puissance apparente de ces classifieurs, il n’est pas évident que les systémes de type LFCS soient
capables de construire des chaines de régles efficaces d’une certaine taille, pour résoudre des problémes
multi-step, par exemple. Il semblerait, selon [Furuhashi et al., 1993], que lorsque le systéme cherche de
nouveaux classifieurs, I'imprécision transférée d’un classifieur & un autre par les variables floues explose
et que le systéme ne puisse plus rien déduire.

2.9 Les S-classifieurs

Les représentations binaires des classifieurs présentent deux principales limitations : tout d’abord,
I’encodage binaire des messages des détecteurs peut induire une perte d’information & propos de la
structure réelle de ’environnement. Ensuite, la correspondance entre la position des bits dans la partie
<condition> d’un classifieur et celle des bits produits par les détecteurs est fixe, ce qui interdit les
messages de taille variable. Si le premier point risque de provoquer des limitations uniquement avec les
environnements dans lesquels ’aspect représentatif joue un role important (comme dans le probléme de
classification d’images), le second point est indépendant du type d’environnement et de détecteurs et se
rencontre donc plus fréquemment.

Jusqu’a présent, les applications dévolues aux systémes de classifieurs (par exemple, les labyrinthes
simplistes du type de la figure 2.1, page 22) se suffisaient amplement d’une représentation binaire, car la
capacité d’apprentissage du systéme était considérée comme plus importante que sa capacité a généraliser.
Par exemple, le systéme XCS de [Wilson, 1995] aborde une représentation plus évoluée. Lanzi s’est rendu
compte que le probléme de la représentation allait devenir une question d’intérét croissant. Il proposa
dans deux articles distincts ([Lanzi, 1999a] et [Lanzi, 1999b]) deux nouvelles approches pour le formalisme
des classifieurs en introduisant les S-classifieurs.

La premiére, nommée messy-coding, a pour but d’éliminer la correspondance fixe entre position des
bits dans la partie <condition> d’un classifieur et la position des bits des détecteurs. Cette technique
permet aux conditions d’acquérir une taille variable en découpant les génes en plusieurs blocs indépen-
dants. Pour aligner les blocs des classifieurs avec les détecteurs, chaque bloc est associé & un tag qui
fait référence & un détecteur. Il est possible d’avoir un classifieur qui posséde deux génes de méme tag
(classifieur sur-spécifi¢) ou des génes manquants (classifieur sous-spécifié). La propriété de généralisation
des symboles joker s’exprime donc naturellement par des classifieurs sous-spécifiés. Dans le messy-coding,
un classifieur est représenté par un chromosome correspondant & une liste de taille variable de couples
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<variable, valeur>, dont I’ordre n’a pas d’importance. Une classe d’algorithmes génétiques spéciaux, les
MGA (ang., Messy Genetic Algorithms [Goldberg et al., 1989]) a donc été créée pour évaluer la fitness de
tels chromosomes. Ces travaux ont donné lieu a I'implémentation de XCSm [Lanzi, 1999a], une version de
XCS adaptée pour le messy-coding dans laquelle les opérateurs de covering, d’activation et les opérateurs
génétiques ont été réécrits. XCSm a été surtout testé dans des problémes de labyrinthe du type Wood
(voir la figure 2.1, page 22). Huit capteurs possibles (N, S, E, O, NE, ...) déterminent la nature du terrain
autour de I’agent et son prochain mouvement. Un exemple de messy-gene (géne de XCSm) situé dans la
partie <condition> d’un classifieur est le suivant :

(N, 1)

Cette condition est activée si l'objet situé au Nord de la position courante du systéme est I'un
des deux objets correspondant & la description « 1# », c’est-a-dire l'objet « 10 » ou « 11 ». L’un des
principaux intéréts des messy-gene est qu’ils permettent la réutilisation de la connaissance : la spécificité
d’un alléle de la partie <condition> est définie en fonction du capteur convenable (ici le capteur N pour
Nord) et non en fonction de la position du bit codant sa description dans le message entrant, si bien qu’il
soit possible de réutiliser les génes appris dans un probléme donné avec un certain type de capteur pour
résoudre d’autres problémes avec des capteurs différents. Dans [Lanzi, 1999a], Lanzi obtient de maniére
expérimentale une base de classifieurs entrainés avec un systéme comprenant des capteurs 4-voisins (N,
S, E, O) et démontre la portabilité et la correction optimale de cette base plongée dans un systéme
comprenant des capteurs 8-voisins (N, ..., O, NE, SE, NO, SO). La correction de la base s’est faite en
utilisant une phase d’entrainement supplémentaire n’ayant employé aucun autre opérateur génétique que
celui de la mutation. L’algorithme sait tirer parti de la pré-évolution d’une population intégrée dans un
systéme comprenant de nouveaux capteurs : le nombre de générations nécessaires a la convergence de
I’algorithme se réduit considérablement.

La seconde approche proposée par Lanzi poursuit davantage I’amélioration de la représentation
des classifieurs. Le systéme XCSL (ang., eXtended Classifier System in LISP, [Lanzi, 1999b]) est une
extension basée sur les S-expressions du langage LISP. Bien que ces expressions puissent étre écrites
de maniére linéaire, elles sont traitées par les opérateurs génétiques comme étant des arbres, dont la
rapidité de I’évaluation est I'un de leurs avantages. Lanzi n’a considéré que des applications simples
pour son systéme XCSL, dont les solutions s’expriment par des fonctions booléennes. Pour cela, la partie
<condition> de ses classifieurs représente une composition des opérateurs logiques AND, OR, NOT.

<cond> :=  "(" NOT <comnd> ")"
| "(" AND <comnd> <cond> ")"
| "(" OR <cond> <cond> ")"
| <var>

<var> := "X0" | "X1" | "X2"

Fia. 2.6 — La grammaire BNF qui permet de générer toutes les conditions possibles des classifieurs de
XCSL.

La figure 2.6 présente la grammaire BNF [Naur, 1960] qui permet de générer toutes les conditions
possibles des classifieurs de XCSL qui s’inscrivent dans un sous-ensemble des fonctions booléennes a trois
variables.

Sur la figure, les terminaux sont représentés entre guillemets et les symboles fonctionnels entre
chevrons. Cette grammaire a été utilisée sur le probléme d’apprentissage de fonctions booléennes®. Par
exemple, voici ’expression d’une condition compléte : « (OR S1 S2) » ou S1 et S2 sont des terminaux
dépendant de ’environnement : une simple variable booléenne dans le cas du multiplexeur ou un prédicat

3Fonction f de n variables (xo,...,zy) définie par f : {0,1}" — {0,1}.
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de test des capteurs d’orientation dans le cas d’un labyrinthe. Les différences par rapport & XCS sont les
mémes que pour la premiére approche. Certains opérateurs ont été modifiés de maniére adéquate :

— Popérateur d’activation ne pose pas de difficulté particuliére, 'expression est simplement évaluée

en respect de la syntaxe classique du systéme de parenthésage de LISP,

— l'opérateur de covering, dont le role est de créer un nouveau classifieur avec une condition aléa-

toire lorsqu’aucun classifieur n’est activé par le message d’entrée, nécessite quelques précautions.
Lanzi s’est rendu compte que pour éviter un probléme de sur-apprentissage induit par une sous-
spécialisation des génes du classifieur, il valait mieux construire, pour la condition, une conjonction
(OR) de trois expressions, chacune étant activée par le message d’entrée. Chacune de ces sous-
expressions est une disjonction (AN D) d’un nombre arbitraire de bits du message d’entrée, sauf
la premiére qui reprend le message exact. Par exemple, si le message est « 010 », on construit
le classifieur « 010 OR 01# OR #+#0 » (Uopérateur AN D n’est ici pas représenté). Cette repré-
sentation garantit d’avoir un classifieur spécifique au message d’entrée, tout en introduisant de la
généralisation par les deux derniéres sous-expressions. Malheureusement ’auteur ne précise pas
dans quelle mesure le choix du nombre trois permet d’obtenir expérimentalement des résultats
optimaux.

— les opérateurs génétiques : Dans XCSL, l’algorithme génétique est appliqué sur I’ Action Set [Wil-

son, 1998] (voir la section 2.7). Deux classifieurs sont choisis avec des probabilités proportionnelles
a leur fitness, puis sont copiés, croisés avec une probabilité y, mutés avec une probabilité y puis ré-
insérés dans I’ Action Set. Le croisement et la mutation respectent les principes connus en program-
mation génétique [Koza, 1992] : le croisement inverse deux sous-arbres dans I’arbre représentant
la partie condition et la mutation remplace un sous-arbre par un autre créé aléatoirement.

Concernant la représentation des classifieurs, Lanzi note un probléme subtil apparaissant avec 1’arri-
vée de 'opérateur OR, qui n’apparait pas avec les autres opérateurs booléens, ni dans le cas des classifieurs
binaires typiques de XCS. Il démontre qu’un degré de représentation plus élevé introduit un biais qui
conduit l’algorithme génétique & créer des classifieurs corrompus et provoque l'instabilité du systéme
(la performance globale se mettant a osciller?). La solution proposée consiste alors & modifier aléatoire-
ment l'ordre d’évaluation des conditions liées par 'opérateur OR lors d’une étape spécifique au cours des
générations génétiques.

Ce systéme a aussi été testé dans les environnement multi-step comme les labyrinthes, dans lequel le
biais de la fonction OR s’est révélé étre plus modéré. Cela se justifie par le fait que dans un probléme de
multiplexeur les conditions sur-générales sont plus courantes car le parcours de ’espace de recherche y est
plus approfondi. Dans un labyrinthe, une condition n’est jamais active sur une longue période de temps
car le message d’entrée change fréquemment, du fait que I’agent se déplace au sein de son environnement.

Les systémes XCS et XCSL ont été testés dans des environnements quasi-similaires en single-step et en
multi-step, ce qui permet de comparer expérimentalement leurs performances (des performances optimales
ont été obtenues dans les deux cas sur tous les types de problémes avec un nombre restreint d’itérations
d’apprentissage). Cependant, de nombreux problémes émergent avec ’apparition des classifieurs en LISP.
A Theure actuelle, ces derniers ont sans doute été encore trop peu explorés dans la littérature. Parmi ces

4Pour illustrer ce phénomeéne, prenons les deux classifieurs suivants :

(a) if C1 then action A

(b) if C2 then action A

ol C1 et C2 sont des conditions formées par le symbole <cond> de la grammaire BNF présentée dans la figure 2.6. Ces
classifieurs sont a priori en tout point similaires au classifieur (c) suivant :

(c) if C1 or C2 then l’action A

En effet, ce classifieur s’applique dans les mémes situations que les classifieurs (a) et (b) et renvoie la méme action A.
Supposons que pendant une longue période de temps, le message d’entrée active plus fréquemment la condition C1 que C2
si, par exemple, C2 est légérement plus spécifique. Si le systéme utilise les classifieurs (a) et (b), la performance du classifieur
(b) décroitra et il finira par étre éliminé. Par contre, s’il utilise & la place le classifieur (c), la condition C2 n’influencera
pas la croissance de la performance de ce classifieur et ce, méme si la condition C2 est complétement inadaptée, voire
fausse. Cela peut conduire I’algorithme a créer des classifieurs inefficaces, sans qu’il en soit informé. Lanzi nomme une telle
condition (C2), une condition cachée par ’opérateur OR. Il en conclue qu’il est possible d’altérer une partie des conditions
d’un classifieur sans influencer négativement sa performance (et donc sans qu’il soit possible de détecter et d’éliminer ces
conditions ou classifieurs) tant qu’on a pas vérifié la totalité des éléments de la conjonction.



2.10. PRINCIPALES AMELIORATIONS APPORTEES AUX SYSTEMES CLASSIQUES 35

problémes, il y a le calcul du degré de généralisation (ou a l'inverse, de la spécificité) d’un classifieur : en
binaire, ce probléme est trivial et revient & compter le nombre de caractéres jokers. Avec les S-expressions,
ce probléme devient beaucoup plus complexe (NP-complet si I’on doit comparer deux a deux les nceuds
de chacun des arbres), ce qui restreint fortement ’utilisation de certaines améliorations proposées par
[Wilson, 1998], notamment la suppression des classifieurs englobés, & moins de disposer d’heuristiques
particuliérement efficaces. Un autre probléme est I'augmentation de la complexité des conditions qui
requiérent du temps processeur pour étre calculées. La encore, des heuristiques de simplification et/ou
d’évaluation d’expressions doivent étre mises au point.

2.10 Principales améliorations apportées aux systémes classiques

Meéme si 'on peut imaginer d’autres méthodes de gratification ou de pénalisation, [Riolo, 1988] a
montré par des simulations que la capacité d’apprentissage du systéme de classifieurs ne dépend pas de
son mécanisme exact (modification de la force des classifieurs pendant que le systéme apprend, taux d’ap-
prentissage, ...), simplement ’apprentissage peut étre plus efficace dans un cas ou dans I'autre [Richards,
2001].

[Richards, 2001], par exemple, ajoute un bruit aléatoire a ’enchére du classifieur vainqueur pour
promouvoir l'exploration de I'espace des classifieurs. De plus, grace a l'introduction de deux types de
taxations supplémentaires, les classifieurs inutiles mais avec une force élevée sont supprimés. Une tazxe
a vie (ang., life tax) est définie, appliquée & chaque classifieur et & chaque itération, ainsi qu’'une taze
a lenchere (ang., bid taz) appliquée & chaque classifieur vainqueur, ce qui pénalise les classifieurs qui
enchérissent a chaque fois. Ainsi, les régles qui sont inactives car occultées par des régles plus performantes
ont une probabilité plus élevée d’étre sélectionnées.

Il reste le cas ot aucun classifieur ne satisfait le message envoyé par les détecteurs. [Robertson et
Riolo, 1988] a introduit le TCDO (Triggered Cover Detector Operator), un opérateur qui s’applique dans
certains cas, par exemple, lorsqu’aucune autre régle n’est applicable. Dans ce cas, un classifieur est créé
aléatoirement de facon a étre compatible avec le message et on lui attribue une valeur pour son parameétre
de force. Cette force est assez complexe & déterminer car elle ne doit étre ni trop faible, ni trop forte.

Enfin, il semble logique d’éliminer en priorité les classifieurs de force faible. Cependant, [DeJong,
1975] montre que le simple remplacement des plus mauvais individus est un peu expéditif et doit étre
amélioré. Il propose de créer une sous-population d’individus peu performants en les croisant plutot qu’en
les supprimant.

De nombreuses autres extensions ont été proposées, parmi lesquelles nous citons :

2.10.1 Les niches implicites

Pour maintenir une certaine diversité dans la population de classifieurs, [Horn et al., 1994] a exploité
un systéme de compétition dans lequel les ressources (c’est-a-dire la quantité de récompenses a récolter)
sont limitées. L’algorithme est dit implicite puisque 'on va forcer les régles des classifieurs a partager les
ressources existantes. L’approche génétique classique consiste en un probléme d’optimisation de fonction :
les classifieurs gagnants sont la simple copie des meilleurs individus de leur génération. Cependant, lorsque
les classifieurs s’influencent les uns les autres, on ne peut plus adopter cette solution. On parle de co-
évolution, co-adaptation ou de fonctions d’optimisation dépendantes du contexte. Parce qu’il y a une
compétition (tout le monde veut s’approprier les mémes ressources), la seule maniére d’y arriver est
de privilégier les régles qui encouragent le partage. Tout le probléme est donc de découvrir des régles
individuelles et diversifiées qui permettent un partage collectif de l’environnement. [Horn et al., 1994]
montre que sans cette méthode, I’algorithme génétique seul associé aux systémes de classifieurs ne pouvait
pas maintenir cet ensemble coopératif de régles.
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2.10.2 La méthode COGIN

La méthode COGIN (ang., COverage-based Genetic INduction, [Greene et Smith, 1994]) est basée
sur la notion d’espéces et de niches, déja introduite par [Goldberg et al., 1989]. Une espéce est une sous-
population de classifieurs qui restent stables au fur et & mesure de leur évolution. Une niche est une
portion de I’environnement dans laquelle une espéce peut espérer survivre. Autrement dit, les individus
percgoivent une gratification lorsqu’ils sont présents dans cette niche. Les individus occupant une niche
consomment ses ressources (la proportion de gratification de cette niche baisse), et si une espéce souhaite
survivre jusqu’a la prochaine génération, elle doit étre meilleure que les autres individus de cette niche, ou
bien se trouver dans une niche sans aucun autre adversaire : ce type d’apprentissage est dit compétitif. La
méthode COGIN est utilisée lorsque I'on doit maintenir la diversité dans une population afin de prévenir
Iimmobilisation dans un minimum local. Elle a été utilisée dans [Fong et Yuen, 2000] pour faire de la
détection d’arétes, la diversité de la population ayant permis de traiter des images avec un taux de bruit
assez significatif (10%).

2.10.3 Le modéle IMGA

Le modele IMGA (ang., Island Model Genetic Algorithm, [Whitley, 1993]) est un modéle distribué.
Il considére les problémes mettant en jeu des sous-populations d’individus indépendantes entre elles,
qui peuvent chacune évoluer séparément comme si elles étaient isolées les unes des autres (& Iimage
d’ilots peuplés), avec éventuellement des possibilités de migration d’individus d’une ile & Vautre, ce
qui permettrait, par ces échanges, de maintenir une certaine diversité dans ’environnement. Le principal
intérét de ce modeéle est qu’il peut étre parallélisé trés facilement : on installe une ile sur chaque processeur
et 'ensemble peut traiter de maniére simultanée la population compléte. Ensuite, au bout de n itérations,
on envoie x% de la population sur le processeur voisin, qui remplace une partie de la sienne.

2.10.4 Le modéle prédictif

On peut aussi citer le systéme de classifieurs prédictif de Sutton [Sutton, 1991], 'un des fondateurs
de I’apprentissage par renforcement et son algorithme DYNAQ de la famille DYNA. Dans un tel systéme,
les régles de la forme :

Si <m; vérifie ¢;> alors <a;>

sont remplacées par des régles de la forme

Si <my vérifie ¢;> et si <l’action est a;> alors <my; vérifiera c;y1>

ol m est un message d’entrée, ¢ une ou plusieurs conditions et a une action.

Au lieu de spécifier simplement une action, le classifieur prédit le contenu de son environnement
local dans I’état de I'instant suivant. Un tel apprentissage est qualifié de latent par la littérature de la
psychologie [Sigaud, 2002]. S. Wilson [Wilson, 1995] dit s’étre d’ailleurs inspiré de ces travaux dans son
systéme XCS, dans lequel le caractére prédictif des classifieurs joue un role important.

2.11 Conclusion

L’extraction de la connaissance sous la forme de régles de classification représente 1’'un des objectifs
de nos travaux. Les systémes de classifieurs présentent une approche intéressante concernant la manipula-
tion et la découverte de la connaissance & travers leurs classifieurs. Dans ces systémes, les classifieurs font
partie intégrante du processus d’apprentissage et ne reproduisent pas le biais d’apprentissage provoqué
par les méthodes inductives, par exemple, lorsqu’elles extraient des régles a partir d’une représentation
figée par la méthode elle-méme, comme c’est le cas pour les arbres de décision ou méme les réseaux de
neurones. Cependant, la représentation classique par une séquence de valeurs binaires pour les classifieurs
n’est pas adaptée au probléme de classification des données de télédétection, qui nécessite la manipulation
de données continues. Une nouvelle amélioration de XCS sera présentée dans cette thése, capable de ma-
nipuler des données réelles, ainsi que divers autres systémes répondant aux mémes objectifs. Notamment,
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une technique confiant le choix de la représentation a 'expert (géographe, connaisseur du domaine, ...)
A base de programmation génétique sera présentée. Ces techniques sont détaillées aprés avoir abordé le
probléme de la complexité des images de télédétection, ce que nous feront dans le chapitre suivant.
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Chapitre 3

Des sources brutes et expertes aux
pré-traitements des données

3.1 Enoncé de la problématique

Les satellites employés a I’heure actuelle autorisent de nombreuses utilisations dans un nombre tout
aussi important de domaines, allant des télécommunications aux prévisions météorologiques, en passant
par les exploitations militaires, la surveillance d’un déversement d’hydrocarbure ou I’étendue d’une inon-
dation. L’une d’entre elles, la télédétection consiste & photographier une zone terrestre d’intérét, avec
une résolution spatiale pouvant atteindre ’ordre du métre avec des satellites comme SPOT-5 ou CASI,
voire de la dizaine de centimétres avec QuickBird (en mode panchromatique). Les images obtenues sont
ensuite analysées dans le but de produire diverses cartographies, ou utilisées pour différentes études de
classifications (présence de routes, d’immeubles, ...), de détections indirectes (détection de villes en fonc-
tion de la densité des routes) ou de quantifications des objets situés sur le terrain (en pourcentage par
espéce de végétation par exemple).

La classification d’images est un vaste domaine qui recouvre parfois des sous-domaines & problé-
matique plus spécifiques, comme la découverte d’une fonction par régression (découverte d’indices de
végétation [Ricotta et al., 1999], probléme inverse PAR [Robilliard et Fonlupt, 2001], ...). Nous n’allons
pas détailler ici toutes les applications des recherches dans ce domaine, mais il est intéressant de noter
qu’encore aujourd’hui, la production de ces cartes ou de ces fonctions est loin d’étre toujours automati-
sée : elle nécessite le travail manuel, long et fastidieux d’un expert, obligatoire lorsque la précision est de
rigueur (par exemple, les phases interactives lors de la production de cartes IGN), et dans le cas contraire
elle s’appuie encore dans la plupart des cas sur des algorithmes statistiques qui ne sont pas forcément
fiables, a cause de leur déterminisme ou de leur manque de robustesse.

Notre problématique principale est la classification supervisée d’images, c’est-a-dire ’extraction d’ob-
jets thématiques intéressants pour Iexpert (immeubles, routes, ...) et leur localisation sur des images
brutes, produites notamment par des satellites. Nous verrons (dans la section 3.4.1) que dans 1’ensemble,
ces données sont de taille importante et sont plutot complexes. Notre processus de classification se com-
pose globalement de trois phases : I’apprentissage a partir d’exemples, le partitionnement de 'image cible
et I’affectation des partitions & chacune des classes d’intérét. Elle se distingue de la segmentation, qui
n’est qu’un partitionnement de 'image en composantes connexes uniformes selon un critére déterminé et
de la catégorisation, en non-supervisé. Notre problématique sous-jacente est la découverte de régles de
classification permettant d’une part, de décrire des concepts et d’autre part, d’identifier les instances de
ces concepts sur des images de télédétection.

Les deux sections suivantes exposent le matériel dont nous avons disposé pour nos classifications.
Les données brutes sont présentées dans la section 3.2 et les données expertes dans la section 3.3. Une
discussion détaillée sur la complexité et le pré-traitement des données est présentée dans la section 3.4.

39
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Enfin, deux études préliminaires concernant ’étude de la robustesse des algorithmes de classification face
au bruit et 'intérét d’utiliser une analyse par réduction de données pour réduire ce bruit sont présentées
dans la section 3.5.

3.2 Données brutes

Les données brutes représentent I’ensemble du matériel de travail, c’est-a-dire celui qui va étre
concerné i la fois par apprentissage et I’exploitation des régles. Alors que les données expertes ne
sont 14 que pour guider ’élaboration d’une classification, la qualité finale des régles dépend en grande
partie de la qualité des données sources dont on dispose. Les données brutes utilisées dans notre étude
se présenteront toujours sous la forme d’images de méme résolution (spatiale) que les données expertes
utilisées conjointement par notre algorithme. Nous allons voir dans cette section essentiellement des don-
nées dites spectrales, car pour chaque pixel, elles fournissent une information quantitative des valeurs
radiométriques de ce pixel pour une certaine plage de longueurs d’onde.
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F1a. 3.1 — Spectre de radiance observé pour un pixel de végétation de I'instrument hyperspectral MIVIS.

Formellement, une image est une matrice a trois dimensions Ix y,¢ ou (X,Y) est respectivement la
largeur et la hauteur de I'image et S le nombre de canaux spectraux (ou bandes spectrales). Une valeur
I(x,y,s) dans cet ensemble est la radiance observée pour le pixel situé a la localisation (z,y) et pour la
longueur d’onde \s correspondant au canal spectral s. Une valeur de radiance correspond & l'intensité de
la réponse radiométrique obtenue depuis le sol. L’espace d’entrée d’un probléme de classification peut étre
vu comme un vecteur ordonné de nombre réels. Pour chaque pixel, la signature spectrale de ce pixel a été
utilisée. La figure 3.1 montre le spectre de radiance d’un pixel observé depuis un capteur hyperspectral.
Chaque canal spectral de MIVIS offre une résolution spectrale d’environ 10 nm.

Mis & part les différents types des supports (une matrice CCD n’a pas les mémes caractéristiques
qu’une pellicule photographique) et des outils disponibles pour les prises de vues (satellite, avion, ballon),
il faut aussi parler des nombreux problémes techniques que 1’on peut rencontrer dans ces images : la
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résolution spatiale, par exemple, n’est pas toujours adaptée aux objets au sol. Pour Strasbourg nous
avions a notre disposition des résolutions plutét faibles (30 métres pour un satellite Landsat, 10 a 20
métres pour un satellite SPOT), alors qu’un paysage urbain est une situation extrémement complexe
dans laquelle le pixel du capteur de télédétection peut renfermer quantité d’objets. La réponse spectrale
obtenue sera une composition non-linéaire de spectres purs. On parlera alors de pizels miztes. Lorsque
le contraste entre un objet et son environnement est suffisamment élevé, cet objet pourra tout de méme
étre détecté, méme si sa taille est inférieure & celle du pixel. Il y a donc une relation entre d’une part
la capacité théorique de détection d’un objet et d’autre part, sa taille et son contraste. Cependant, le
capteur a ses limites, certains objets méme trés brillants sont parfois vraiment trop petits pour pouvoir
étre présents dans 'image.

Nous allons donner un bref apercu des différents outils d’acquisition de données brutes exploitables.
Le projet TIDE, de part sa nature, a été plus prolifique en données validées que nous n’ayons pu en
obtenir pour Strasbourg, nous nous attachons cependant beaucoup a ces données car c’est une région que
nous connaissons bien, ce qui facilite largement les validations.

3.2.1 Images SPOT

Les satellites SPOT (Satellite Pour I’Observation de la Terre) sont un ensemble d’instruments de
surveillance de la Terre (SPOT5 a été lancé le 4 mai 2002) dont les images servent dans des domaines
aussi divers que ’agriculture, la fabrication de cadastres, la planification urbaine, les télécommunications,
I'ingénierie géologique et civile ou I’exploration de nappes de pétrole ou de gaz. Ce type de satellite est
muni de 6000 micro-capteurs [SPOT, 2005a] permettant de prendre d’un seul coup une bande au sol de
60 km de longueur. La résolution spatiale réalisée est de 'ordre de 10 métres de largeur par pixel, et
de 20 métres de largeur lorsque 'on couple ensemble deux détecteurs, ce qui permet d’avoir des images
multispectrales [SPOT, 2005b]. SPOT5 autorise une résolution plus importante, de ’ordre de 2.5 métres.

Les valeurs obtenues sont définies sur 8 bits, ce qui autorise 256 valeurs différentes par pixel et par
bande. L’'instrument VEGETATION est un ensemble de capteurs comprenant les mémes caractéristiques
sur SPOT4 ou SPOTS5, et qui permet de conduire des études spécifiques sur 'environnement (cultures,
biosphére, ...). Le tableau 3.1 présente les fréquences pour les 4 bandes spectrales d’analyse, adoptées
pour la spécificité de la réponse spectrale de certains objets comme le sol, la végétation, le désert ou la
neige.

Canaux Longueurs d’onde
Voie visible verte V (XS1) 0.50 & 0.59 pm
Voie visible rouge R (XS2) 0.61 & 0.68 um
Voie visible proche infrarouge PIR (XS3) 0.78 4 0.89 pum
Voie moyen infrarouge MIR 1.58 4 1.75 pym

TAB. 3.1 — Longueurs d’onde de SPOT-4 ou SPOT-5 [SPOT, 2005c].

On peut noter qu’un miroir plan présent dans le systéme de détection du satellite permet d’orienter la
direction de visée, permettant de réaliser des couples d’images stéréoscopiques : cela permet notamment
de restituer le relief du site observé, la variation et l'orientation de la pente, la hauteur des immeubles (in-
fluencant la taille de leur ombre), etc. Malheureusement ce type d’information, pourtant trés importante
mais aussi trés cotlteuse, n’a pas été disponible pour réaliser nos travaux.

3.2.2 Images haute résolution

Ces images d’une trés grande résolution spatiale (un pixel représente au sol une taille de 1.30 m x
1.30 m) ont été fournies par le CNES en 1999, lors d’un vol de simulation depuis un avion volant & haute
altitude, au cours d’un projet visant & tester les capteurs embarqués sur SPOT5 (les images contiennent
donc le méme nombre de bandes spectrales que le SPOT officiel). Des détails comme des arbres ou des
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voitures sont tout a fait reconnaissables sur ce type d’image, ce qui paradoxalement peut compliquer leur
classification, car ces petits objets peuvent étre assimilés & du bruit (coloration différentes des voitures,
tailles d’arbres variées, ...).

=By ARy

= m—

F1G. 3.2 — Image haute résolution de Strasbourg (simulations CNES).

Voici une image de Strasbourg (figure 3.2), représentant une partie a I'est du centre de la ville, d’une
taille de 1100 x 900 pixels, dans laquelle on peut observer les quartiers Est de Strasbourg. L’un des intéréts
de cette image, outre sa trés grande résolution spatiale, est I'existence d’une image experte parfaitement
synchronisée de la méme zone (les pixels se superposent exactement), comme nous allons le voir dans la
partie 3.3. La photo a été traitée par une égalisation d’histogramme afin d’en voir clairement les contours.
On peut facilement imaginer les problémes posés par la présence de zones ombragées, surtout dans un
contexte urbain dans lequel les différents objets de la scéne peuvent avoir des hauteurs non négligeables.
Ces zones rendent difficile la reconnaissance des parties couvertes par 'ombre, car leur radiance est
fortement amoindrie et altérée. Lors de la phase de reconnaissance, on préférera donc placer 'ombre dans
une classe & part, plutot que de déterminer celle des pixels sous-jacents. L’image de la figure 3.2 a été
prise & 9 heures du matin, heure locale (présence d’ombres rasantes), dans des conditions favorables.
Malgré son apparence, il ne s’agit pas d’une simple photo, mais bien des 3 bandes du capteur de SPOT,
reproduites directement en fausse couleur. Le volume de cette image représente 3 Mo de mémoire.
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3.2.3 Images hyperspectrales

A la différence des images SPOT, les capteurs de ce type de satellite sont capables de traiter un
nombre trés important de longueurs d’onde, de 'ordre de la centaine. Un pixel ne sera plus représenté
par un triplet de valeurs comme dans le cas de SPOT, mais par un vecteur hyperspectral représentant
I’ensemble des radiances pour toutes les longueurs d’onde du spectre étudié. Des systémes aéroportés
comme DAIS permettent une résolution spectrale de 79 canaux, une résolution spatiale de I’ordre de 3
métres par pixel, et définissent les valeurs de radiance sur 16 bits, ce qui fait 65536 valeurs possibles
[DAISEX, 2001]. D’autres satellites permettent une grande précision d’échantillonnage du spectre des
pixels, comme CASI qui posséde une étendue spectrale de 288 canaux avec une résolution spatiale de 1.3
m au sol [CASI, 2005].

Ces images ne pourront jamais étre affichées telles quelles a l'utilisateur. La prévisualisation de
ces images étant tout de méme importante dans un souci de validation, des algorithmes d’affichage ont
été développés, notamment au sein de notre équipe pour notre plate-forme d’expérimentation ICU. Ces
algorithmes tiennent compte de I'information du spectre visible par ’homme pour déterminer une couleur
réaliste des pixels, tout comme s’ils étaient visualisés directement par nos yeux depuis le ciel.

L’image suivante (figure 3.3) représente une photo prise par DAIS, un instrument aéroporté hyper-
spectral, le 17 juillet 1999 vers 18h50 (heure locale) aprés 6 semaines de pluie. Elle représente une zone
couvrant Strasbourg depuis le lac de Reichstett au Nord (représenté & droite) jusqu’au terrain d’aviation
du Polygone au Sud (représenté a gauche). Sa taille est de 512 x 2885 pixels, pour une résolution de 3m x
3m par pixel. Un algorithme spécifique pour la visualisation des images hyperspectrales a été utilisé pour
produire un rendu réaliste a partir des 45 bandes spectrales de I'image (on a retiré 34 bandes des données
qui en comptaient initialement 79 & cause de leur aspect extrémement bruité). Les longueurs d’onde de
ces bandes varient de 0.498 & 12.668 um. Le volume de 'image de la figure 3.3 dépasse les 220 Mo.

F1a. 3.3 — Image hyperspectrale de Strasbourg (DAIS) et un extrait réorienté représentant le Parlement
Européen, le Palais des Droits de ’'Homme et le Palais Européen.

Le dernier exemple représente San Felice (région de Venise, voir la figure 3.4). D’une taille de 932 x
368 pixels, elle a été prise par ROSIS, un autre instrument aéroporté hyperspectral, le 30 novembre 2001,
avec une résolution d’environ 1m x 1m par pixel. L’image produite par le satellite avait 115 bandes mais,
14 encore, les 19 premiéres bandes devaient étre enlevées avant tout traitement pour les mémes raisons
de bruit qu’auparavant. Les longueurs d’onde de ces bandes varient de 0,418 & 0,874 um. Le volume en
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mémoire de I'image est proche de 80 Mo.

F1a. 3.4 — Image hyperspectrale de la lagune de San Felice (ROSIS).

Nous avons travaillé sur bien d’autres images multispectrales ou hyperspectrales, chacune possédant
leurs intéréts propres, mais nous ne les avons pas tous détaillées ici, car ce n’est pas 'objet de cette
thése. Le tableau 3.2 présente un résumé des principales caractéristiques des autres images utilisées dans
le cadre du projet TIDE.

Instrument imageur

Type Nom Caractéristiques
Canaux Plage (\) Sensibilité
Panchrom. 1 0.45 - 0.90 um Panchrom.
Satellite QuickBird 2002
Multispectral 4 0.45 - 0.90 pm Visible, NIR
CASI 2003 Hyperspectral 288 0.4329 - 0.8741 pm Visible, NIR
Port 1 20 0.433 - 0.833 um Visible, NIR
Port 2 8 1.15 - 1.55 um Middle IR
Aéroporté MIVIS 2002
Port 3 65 2.000 - 2.492 pm Middle IR
Port 4 9 8.20 - 12.70 um Thermal IR
LIDAR 2003 2 1°"¢ ou dern. impulsion Elevation

TAB. 3.2 — Base de données des images du projet TIDE.

3.3 Données expertes

La phase d’apprentissage supervisée a besoin au préalable, pour suivre un déroulement correct, d’un
certain nombre d’informations supplémentaires sur les classes a trouver, dites informations expertes. Ces
informations peuvent étre produites de maniére indépendante et de plusieurs facons :

— L’expertise humaine, trés cotteuse, permet néanmoins une analyse précise de la zone observée. Un
expert ne tombera pas dans les piéges faciles d’une analyse automatique, lorsqu’il s’agira de classer
des cas rares comme la présence d’une péniche remplie de bois sur de ’eau, ou la présence d’une
piscine sur un immeuble. Son expertise se révéle étre toujours convenable, grace & une éventuelle
validation directement sur le terrain pour confirmer les décisions lors des situations extrémes.
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— L’analyse statistique ou non supervisée produit un ensemble de classifications de maniére systéma-
tique et rapide, mais pas toujours fiable. Ces analyses résultent d’algorithmes qui ne sont jamais
parfaits : ils ont leurs domaines de prédilection donc, & 'inverse, leurs domaines de vulnérabilité.
Bien entendu, ces classifications peuvent étre validées par un expert humain, mais cela est irréaliste
du point de vue de la taille des images.

— L’exploitation d’images de télédétection pose souvent des problémes non triviaux, que les mé-
thodes statistiques ne peuvent pas résoudre. Pour aider davantage le processus d’extraction de
connaissances, l'introduction de données sémantiques, structurelles ou contextuelles supplémen-
taires, comme par exemple la fréquence de voisinage de I’eau avec des batiments bétonnés (notion
de texture), la forme réguliére desdits batiments ou leurs relations dans I'environnement global
de 'image (notion de contexte) peuvent bien entendu étre utilisées sous forme de régles de com-
position, mais nous n’entrerons pas dans ce domaine qui oscille encore entre la spéculation et la
manipulation d’ontologies complexes.

Les informations expertes que nous possédons se répartissent en plusieurs catégories :

— les données observées directement sur le terrain (ang., ground-truthing) [Marani et al., 2005],

— celles sélectionnées et validées par I'expert en laboratoire qui éventuellement choisi les ensembles
de test et d’apprentissage, nommés ROI (ang., Region of Interest) [Silvestri et al., 2002],

— et enfin dans le pire des cas, des classifications automatiques (supervisées ou non).

3.3.1 Données expertes obtenues de maniére manuelle

Ces données rassemblent un certain nombre de points (souvent peu nombreux) caractérisés par un
expert humain. Ces points, nommés ground-truthing mettent en relation une position réelle (obtenue par
un GPS) avec un certain nombre de classes. Plus formellement, & partir d’'un ensemble de points d’une
image I et d’un ensemble de classes C, on défini 'expertise E : I — C' comme suit :

w(z,y) — {ci € {c1,c2,. .., cn}} (3.1)

ot w(zx,y) est I'expertise du pixel (z,y) et ¢; la classe de ce pixel.

Il s’agit souvent d’une expertise de qualité (désignée par le terme gold standard) mais fastidieuse a
obtenir, d’ou sa rareté. Actuellement, 'expertise tend de plus en plus a fournir une identification plus
précise des objets observés, par exemple en affectant pour chaque pixel le pourcentage estimé de sa
composition pour toutes les classes d’étude.

La figure 3.5 montre un exemple de données expertes. Chaque point est affecté & une classe et
représente la relation entre une donnée GPS et une donnée radiométrique (obtenue avec un spectrométre
au sol). Souvent, pour des raisons de temps d’acquisition, uniquement les zones frontaliéres de deux
espéces de végétations sont marquées (formation de polygones thématiques).

Ces points sont ensuite sélectionnés en laboratoire pour former les régions d’intérét (ang., ROI ou
Region of Interest). Les points sont ajustés, les polygones sont fermés et sont labellisés par la description
de la classe. Aprés ce traitement, les zones ne se recouvrent plus. La figure 3.6 montre une telle structure.

3.3.2 Classifications obtenues de maniére automatique

Lorsque l'information experte de terrain n’est pas disponible, nous avons utilisé des classifications
obtenues & ’aide de segmentations ou de méthodes statistiques. Ces classifications ont toujours été affinées
et validées & la main par un expert connaissant la région.

La carte présentée sur la figure 3.7 a été extraite directement & partir de 'image haute résolution
présentée sur la figure 3.2. L'un des avantages de la technique automatique est le fait que la zone re-
présentée est synchronisée et la recouvre entiérement. Cependant, nous avons di la corriger pour deux
raisons : premiérement la présence de pixels uniques et isolés, constituant des classes & part entiére, ris-
quait de perturber fortement notre algorithme de classification. Ces pixels ont donc tous été rattachés a
des classes existantes et quantitativement mieux représentées dans I'image, en fonction des classes voisines
et du bon sens. Deuxiémement, compte tenu de la réponse spectrale pratiquement identique pour I'eau



46 CHAPITRE 3. DES SOURCES AUX PRE-TRAITEMENTS DES DONNEES

F1G. 3.5 — Données expertes (ground truthing) pour San Felice (MIVIS).

Fia. 3.6 — Régions ROI (ang., Region of Interest) comprenant des ensembles de points sélectionnés par
Pexpert pour San Felice (MIVIS).

et pour I'ombre, certaines rues du centre ville étaient considérées comme inondées. Strasbourg n’étant
pas Venise, il a donc fallu manuellement remplacer toutes les régions noyées par des zones ombragées.
Cependant, ce traitement se réveéle étre trés laborieux dans certaines parties de I'image, par exemple au
niveau du pont situé au milieu du tiers inférieur de "image : la présence de pixels d’eau et d’ombre (des
spectres trés proches vis & vis de la résolution spectrale de SPOT) sont ici mélées, et cette partie de
I’image n’a pas été traitée en apprentissage.

Quand on analyse la réponse spectrale de nombreux échantillons provenant du milieu urbain ou
autre, on observe au moins trois grandes catégories distinctes discriminant ces échantillons :

— ceux se rapportant au végétal, & la matiére vivante : la courbe spectrale dans le domaine du proche



3.3. DONNEES EXPERTES 47

F1G. 3.7 — Image experte de Strasbourg (segmentation).

infrarouge (canal NIR) présente un pic au niveau des longueurs d’onde de la plage 0.530 & 0.560
um (couleur verte), di a la présence de chlorophylle dans la végétation,

— ceux se rapportant au minéral, & la matiére inerte : la courbe spectrale est croissante et quasi-linaire
dans le domaine du visible et se prolonge méme au-dela dans linfrarouge,

— et ’eau qui se distingue profondément des catégories précitées : sa réponse spectrale se caractérise
globalement par une courbe décroissante dans le domaine du visible (en considérant des spectres
représentés avec les longueurs d’onde croissantes en abscisse et les valeurs de radiance croissantes
en ordonnée).

Concernant le projet TIDE, I'image de la figure 3.8 présente I'une des classifications supervisées
que nous avons utilisées lorsque les régions d’intérét expertes n’ont pas été disponibles, ou simplement
pour valider les résultats de nos algorithmes évolutifs. Elle a été obtenue par un algorithme nommé
SAM (ang., Spectral Angle Mapper), classique, connu dans la littérature en télédétection et couramment
implanté dans les systémes commerciaux [Yuhas et al., 1992].
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Fi1G. 3.8 — Image utilisée en tant qu’expert, obtenue & partir d’une classification supervisée pour San
Felice.

3.3.3 Propriétés attendues pour les données expertes

Les données expertes représentent une source d’information importante pour les algorithmes d’ap-
prentissage supervisé. Voici une liste des propriétés attendues concernant les données expertes.

1. Les données dans le jeu d’apprentissage sont représentatives du nombre de classes, de leurs fré-
quences et de leurs variations.

2. Les données de référence (données brutes et expertes) sont parfaitement synchronisées par géoréfé-
rencement.

3. Il n’y a pas d’erreur dans les données de référence, c’est-a-dire une identification incorrecte des objets
par ’expert, une évolution de la végétation au sol ou de la canopée entre la date d’acquisition de
I'image et sa validation terrain, des erreurs de positionnement GPS,; ...

4. En classification hard ou soft (voir la section 4.2), il n’y a pas de biais trop important entre la
composition spectrale des mixels et le choix des classes durant ’identification (conversion d’attributs
réels en attributs nominaux).

Travailler sur des données expertes de qualité est trés important pour la fiabilité des régles de
classification extraites par les algorithmes d’apprentissage. Malheureusement, dans la réalité, plusieurs
de ces propriétés apparaissent comme trés optimistes [Verbyla et Hammond, 2002]. Les données que
nous avons eues a manipuler présentaient une qualité parfois variable. Cependant, cette qualité peut étre
ameéliorée par 'application d’un certain nombre de pré-traitements, que nous présentons dans la section
suivante.
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3.4 Complexité et pré-traitements des images spectrales

3.4.1 Considérations sur la complexité des données

Les données brutes que nous avons vues jusqu’alors ne peuvent pas étre utilisées directement dans
les algorithmes d’apprentissage. En effet, les images de télédétection présentent des difficultés que nous
nous proposons de rassembler ici. Heureusement, des pré-traitements sont disponibles permettant d’en
contourner un grand nombre. Ils seront présentés dans la partie suivante. Ces difficultés sont :

Une taille souvent large. Les images sont de plus en plus larges, permettant de couvrir une plus
grande zone & colt moindre, tout en évitant les sur-cotts de temps et d’imprécision & devoir gérer
le « mosaicking' ». Souvent le recollement de bandes laisse apparaitre des différences de contraste
et d’intensité sur les sites frontaliers, qui sont absentes des images plus larges. Cependant, de larges
images nécessitent des processus de traitement plus expansibles, adaptés & une grande masse de
données, et peuvent faire apparaitre des effets de distorsion géométrique®. En général, I'utilisation
de petites images est préférable. La taille dépend de la résolution du capteur, de quelques dizaine
a quelques centaines de kilomeétres de fauchée et peut conduire & produire des images de plus de
12 000 pixels de coté. Du point de vue de la durée du traitement, il est préférable que la complexité
des algorithmes soit linéaire en fonction du nombre de pixels.

Une résolution élevée. Il existe quatre types de résolution :

1. La résolution spatiale mesure la taille réelle d’un objet correspondant & un pixel de 'image.
Pour les applications de télédétection, elle varie de 60 cm pour les instruments les plus perfor-
mants (QuickBird) & environ 4 km.

2. Lareésolution spectrale concerne le nombre et la finesse des canaux (ou bandes spectrales) c’est-
a-dire le nombre et la taille des fenétres de longueur d’onde distinctes. On distingue les capteurs
panchromatiques ne capturant qu’un seul canal (en niveau de gris), les capteurs multispectrauz
(2-20 bandes), hyperspectrauz (100-300 bandes) et ultraspectrauz (quelques milliers de bandes).
A Theure actuelle, ces derniers capteurs ne sont pas encore développés. La figure 3.1 (page 40)
montre un exemple du spectre de radiance d’un pixel depuis un capteur hyperspectral.

3. La résolution radiométrique concerne le nombre de niveaux de radiance détectés par le
capteur. Par exemple, une image numérique classique délivre 256 niveaux de gris par canal.
En télédétection, la résolution radiométrique d’un capteur dépend de sa sensibilité et de sa
précision : on peut avoir des valeurs sur 8, 16 ou 32 bits par canal.

4. La résolution temporelle, qui dépend du temps d'un cycle orbital® dans le cas d’un satellite.
Avoir une bonne résolution temporelle n’est importante que pour les phénomeénes de courte
durée dont on veut observer la périodicité (inondation, déforestation, dégazage, ...), ou lorsque
I’on souhaite analyser plusieurs images simultanément ce qui n’est pas le cas de notre problé-
matique dans le projet TIDE.

Toutes ces données sont souvent nécessaires simultanément & un systéme d’apprentissage pour lui
donner une chance correcte de discriminer selon les bons critéres. La taille de ces données est donc
directement liée au produit de I'information apportée par chaque résolution, et peut facilement
atteindre le giga-octet.

Une complexité non linéaire. Les spectres obtenus, malgré une résolution spectrale élevée, ne seront
jamais comparables a des spectres parfaits, de laboratoire. De nombreuses interactions environne-
mentales interviennent et dégradent le signal pergu, ce qui peut le rendre dissemblable par rapport
a un étalonnage ou aux validations terrain. On peut signaler I'influence des saisons, des conditions

!Ensemble de fauchées (ang., stripes) distinctes obtenues par passage successif du satellite ou de ’instrument imageur
ayant des zones de recouvrement plus ou moins grandes. Leur recomposition s’appelle ’opération de recalage.

2Le sommet de 1’objet (immeuble, ...) au centre sera vu correctement tandis que les objets éloignés laisseront apparaitre,
en plus, 'un de leurs cotés.

3Passage au dessus d’un méme point au sol, ou nadir.
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Fi1G. 3.9 — Effet de 'humidification sur la transformation progressive du spectre d’une espéce végétale :
les spectres s’aplatissent en présence d’eau, [Leone et Menenti, 2000].

d’illumination terrestre, de la position des plantes ou des feuilles renvoyant des spectres différents
pour la méme espéce végétale comme sur la figure 3.9, montrant les altérations spectrales observées
en fonction du taux d’humidification des feuilles. Enfin, signalons le probléme des mizels, ces pixels
qui renferment plusieurs types d’objets différents de résolution supérieure en mélant leurs spectres
respectifs de maniére non-linéaire [Foody et al., 1997]. Cette complexité nécessite donc des modéles
performants qui ne se contentent pas simplement d’associer des classes pures aux pixels étudiés
mais de caractériser les modifications de ces spectres purs, loin d’étre linéaires.

F1G. 3.10 — Canaux bruités typiques : respectivement Strasbourg (bande numéro 42 et 49 de DAIS) et la
Lagune de Venise (bande numéro 45 de DAIS).

Des données bruitées. Le bruit des images intervient a plusieurs niveaux. Tout d’abord I'image brute
est toujours entachée de nombreux défauts. Par exemple, quelque soit 'instrument imageur, qu’il
s’agisse d’un satellite, d’un avion ou d’un ballon, les distorsions géométriques sont toujours présentes.
Cela peut dépendre de ’optique du capteur, du relief en trois dimensions de la surface de la Terre ou
de sa rotation qui peuvent causer de légers décalages a I'Ouest (distorsion oblique). D’autres types
d’artefacts peuvent apparaitre, par exemple I’absorption atmosphérique des valeurs de radiance dans
les faibles longueurs d’onde, quand il ne s’agit pas des capteurs eux-mémes (défectuosité, memory
effect de Landsat, vignetage, ...). La figure 3.10 présente quelques canaux bruités typiques. Une
image hyperspectrale classique peut en contenir jusqu’a 50%.

Les objets représentés peuvent étre eux-mémes source de perturbations. Par exemple, la structure
en 3D du milieu urbain offre une complexité qui provoque certaines particularités au niveau du
signal regu par les capteurs : ombres ou réflexions des facades, camouflage de différents éléments
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urbains, effets directionnels des matériaux urbains, diversité des réponses pour le méme type d’objet
en résolution élevée.

Ensuite, les données expertes comprennent aussi un certain nombre d’imprécisions notamment &
cause du choix du site de validation, de I’échantillonnage des points et de la précision humaine.

Une expertise concise. Enfin, nous devons signaler que I'information experte, fondamentale & tout
traitement supervisé, est souvent peu nombreuse, comparée 4 la taille des images a classifier, méme
si elle est d'une trés bonne qualité. Ingrate, longue et cotiteuse en terrain réel, I’expert choisira de
valider de préférence des zones de terrain stables et pures, de fagon & avoir une correspondance
maximale avec I'image capturée. Ces zones stables et pures ne sont pas forcément représentatives
de tous les mélanges au sol, ce qui réduit d’autant plus les chances de succés des algorithmes
d’apprentissage, qui fonctionnent selon un principe hétéro-associatif, les modéles connexionnistes
en particulier.

Enfin, un autre type de verrou & la classification d’images est le fait que les données entretiennent
une certaine complexité relationnelle. Différentes sources de données (que ce soient des images brutes ou
des données expertes) peuvent avoir une relation forte entre elles. Un exemple simple est le cas des images
multi-échelles. La couverture du terrain ne se fait habituellement pas par une prise de vue unique, qu’elle
soit satellitaire (SPOT, LANDSAT) ou aérienne (DAIS, ROSIS). Les raisons en sont essentiellement : (1)
la faculté de pouvoir appliquer des indicateurs différents sur des sources différentes afin de promouvoir
la complémentarité des mesures pour la classification et (2) la calibration de ces mesures pour la méme
région. Bien que 'on pourrait se contenter d’un seul couple images sources - images expertes par clas-
sification supervisée, les nouvelles thématiques de recherche traitées par les spécialistes en télédétection
abordent des méthodes qui leur permettent d’intégrer plusieurs sources d’informations simultanément.
La littérature a abondamment souligné I’existence de cette nouvelle piste [Bijaoui et al., 1994; Murtagh
et Starck, 1999; Sharon et al., 2000], sans toutefois pouvoir proposer des solutions satisfaisantes pour
I’emprunter, méme si quelques résultats ont été obtenus, notamment dans la segmentation de textures
de paysages naturels [Metzler et al., 2000]. Ce probléme est traité activement dans ’ACI Fodomust
[FoDoMuST, 2005] et ne sera pas développé ici.

Du point de vue de I'expertise, une méme donnée peut réunir un ensemble d’informations contra-
dictoires pour le méme pixel. Ce probléme intervient, par exemple, lorsque la résolution de 'image n’est
pas assez fine et que la région en question contient plusieurs espéces végétales différentes. Le pixel (ou
sa représentation sous forme de signature spectrale) est alors une composition, pas forcément linéaire,
de plusieurs essences de végétaux, se traduisant par une mizture des spectres respectifs. Ce type d’infor-
mation experte est appelée information non consensuelle sur mizel. A I’heure actuelle, il n’existe aucun
modéle fiable permettant de produire les compositions spectrales de tels mizels. Les caractéristiques de
ces informations devraient étre prises en compte a la fois lors du traitement des données brutes (classifi-
cation) mais aussi lors de 'apprentissage, au niveau de I’expertise. Les méthodes de traitement doivent
intégrer le fait que l'expertise peut se composer de valeurs floues, ce qui ajoute encore a la complexité
ambiante des données.

Toutes ces considérations mettent en avant la spécificité des données rencontrées dans un probléme
de classification d’images satellites, ainsi que les diverses difficultés 'accompagnant. La partie suivante
présente la liste des pré-traitements qui ont pu étre utilisés lors de I’adaptation de ces images brutes a
notre algorithme de classification.

3.4.2 Pré-traitements

Certains pré-traitements des images sont effectués par les fournisseurs. Il peut s’agir d’étalonnages,
de corrections géométriques (correction de la déformation par le relief de la Terre), de corrections atmo-
sphériques, de géoréférencement par capteur GPS et de recalages (assemblage des différentes fauchées).
D’autres pré-traitements ont été effectués par des librairies développées dans notre équipe. Concernant les
données brutes, nous pouvons citer I’épuration des canaux (suppression des plus mauvais, amélioration
des autres), la sélection des zones d’intérét (ang., cropping) et certains filtrages statistiques (égalisation
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d’histogramme, correction du contraste, ...). Concernant l’expertise, les deux pré-traitements principaux
sont le calcul des enveloppes convexes et la catégorisation des classes : pour gagner du temps, les experts
ne constituent souvent au GPS que des polygones thématiques (ang., patches), délimités par un certain
nombre de points situés sur la frontiére de la zone qu’ils souhaitent labelliser. Il s’agit alors d’appliquer
ces polygones sur 'image, de calculer leurs enveloppes convexes (algorithme QuickHull [Graham, 1972;
Preparata et Shamos, 1985]) et d’intégrer les pixels aux exemples de référence. Un certain nombre de
points, situés sur la frontiére, ne doivent pas étre pris en compte, car ils peuvent appartenir & plusieurs
espéces de végétation différentes mais concomitantes.

FiG. 3.11 - Principe du traitement des polygones thématiques, par calcul de I’enveloppe convexe.

La figure 3.11 illustre ce procédé automatique : les pixels rouges (carrés sombres) sont ceux effec-
tivement pris en compte. La catégorisation concerne la labellisation des mizels par des classes pures ou
des combinaisons virtuelles de classes. Par exemple, pour un mizel M = {c1 : 85%,ca : 10%,c3 : 5%}
formé d’une composition spectrale de 3 classes {¢1, ¢, c3}, on peut soit considérer que M appartient a la
classe dominante ¢y, soit créer une classe virtuelle ¢4 = {c; : 851—510%, Co 851+—010%} ={c1:89%,co : 11%}
représentant ce type de composition, par exemple dans le cas ou elle serait fréquente. Généralement,
un mizel est dit pur si la proportion d’une espéce est d’au moins 90%. Selon le type et la robustesse
des algorithmes, on peut étre amené & supprimer — des données de référence — les mizels dont la classe
dominante & une proportion autour de 50%.

3.5 Etudes approfondies

3.5.1 Reéduction des données

Compte tenu de la forte taille et de la haute résolution spatiale et spectrale des données, il est
intéressant de noter qu’il existe des techniques de réduction de données judicieuses dans notre cas. L’une
d’entre elles est sans doute l’analyse par composantes principales (PCA ou ACP).

Il s’agit d’une technique permettant de transformer un systéme d’équations linéaires en un autre
de telle sorte que les termes (appelés composantes) ayant les coefficients les plus forts soient situés en
premier. Cette transformation linéaire consiste & projeter chaque point dans un autre systéme d’axes
orthogonaux. Les derniéres composantes ont souvent des coefficients faibles, ce qui permet de les éliminer
et donc de réduire les données.

La figure 3.12 représente les 100 canaux les moins bruités d’un extrait de 'image de ROSIS présentée
sur la figure 3.4, page 44. L’image hyperspectrale originale en comporte 115. On peut noter trois types
de bandes : celles qui sont bruitées (type I), celles présentant la végétation sous un aspect sombre (type
IT) et celles la montrant sous un aspect clair (type III).

La figure 3.13 montre la fidélité de reconstruction en utilisant les N composantes obtenues en utilisant
PACP. @, est la qualité pratique et indique la similarité normalisée entre 'image reconstruite et I'image
originale et @); est la qualité théorique, obtenue en calculant la somme normalisée des valeurs propres
(ang., eigenvalues). Les moyennes sont calculées sur un échantillon de 3000 points choisis aléatoirement
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F1G. 3.12 — Les 100 canaux les moins bruités de ROSIS.

dans les données. On observe que 95% d’information se trouve dans les sept premiéres composantes.
La figure 3.14 illustre le traitement de PACP pour ces premiéres composantes : chaque composante est
représentée par un ruban coloré. Chaque ruban indique pour chacune des bandes (axe horizontal & gauche)
les valeurs du vecteur propre correspondant (ang., eigenvector). La premiére composante intégre donc les
canaux de 1 & 50 (du type II) et la seconde composante les canaux 51 a4 115 (du type III).

La figure 3.15 présente les quatre premiéres composantes. L’observation des sept premiéres compo-
santes, qui contiennent toute l'information, indique que seules les deux premiéres ne sont pas bruitées.
Des tentatives successives de classification de ces données ont toujours échouée, la qualité décroissant si-
gnificativement lorsqu’on manipulait plutot I'image par composantes que l'image originale (par exemple,
avec D'algorithme évolutif ICU, présenté par la suite, le taux d’exemples correctement classifiés passait
de 0.82 & 0.39 soit une diminution de 52%). En fait, il semblerait que le bruit soit considéré comme une
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F1G. 3.13 - Fidélité de reconstruction en utilisant I’ACP sur I'image de ROSIS.

information beaucoup trop tot, car dans ce type d’images, la composante bruitée du signal est souvent
présente de maniére corrélée sur plusieurs bandes, et se fait donc extraire en une composante majeure
par ACP. Les bandes restantes ne contiennent pas suffisamment d’informations pour classifier I'image.

1l est cependant possible que PACP donne de meilleurs résultats avec d’autres images ou d’autres
algorithmes, par exemple, en non supervisé. Cependant, ’ACP est aussi utile dans d’autres cas qui
dépassent notre étude : le suivi temporel consistant & comparer deux images prises a des dates différentes
(les informations intéressantes se trouveront dans les derniéres composantes) ou la fusion d’images a des
résolutions spectrales différentes. Cependant, un inconvénient subsiste : la transformation des données
par I’ACP résulte en une perte de l'interprétabilité spectrale pour 'expert [Velez, 2003], ce que nous
considérons comme une perte d’information non acceptable dans notre cas.

D’autres méthodes comme I’ACI (Analyse par Composante Indépendante) ou la PP (ang., Projection
Pursuit) peuvent étre utiles, nous n’avons cependant pas mené d’autres investigations & ce sujet. Par
exemple, une étude a été conduite en utilisant ’ACI, sans obtenir toutefois des résultats déterminants
pour le moment [Lennon et al., 2001]. Dans nos expérimentations, nous nous sommes contentés de réduire
les données en utilisant de simples échantillonnages, mais basés sur les nombreuses recommandations des
experts, notamment concernant la répartition statistique des classes et des valeurs extrémes.

3.5.2 Analyse de la robustesse face au bruit

Comme I’étude précédente tend a prouver qu’il existe des données qui rendent difficile I'utilisation
d’une ACP en pré-traitement, il restait a savoir si les algorithmes employés ont une chance d’étre suffi-
samment robustes au bruit.

L’algorithme A2 présente un protocole de validation d’une méthode d’apprentissage face a des don-
nées bruitées. Il a été testé sur 'image de ROSIS en sélectionnant, pour le jeu de référence S, un
échantillonnage de points validés correspondant & 10% de toute 'image (c’est-a-dire 34297 points). Cet
algorithme appelle la méthode d’apprentissage sur des sous-ensembles d’exemples bruités (50% en ap-
prentissage, 50% en validation) et calcule la performance moyenne sur un certain nombre n de tests.
La méthode d’apprentissage doit étre paramétrée par ’utilisateur. Nous avons choisi la méthode ICU
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ALGORITHME A2
VALIDATION D’UN ALGORITHME FACE A DES DONNEES BRUITEES

~» PARAMETRES - S représente les données, n est le nombre de cycles de tests, p, est le
pourcentage de bruit appliqué sur les données brutes et p. sur les données expertes

~ RESULTAT - (), la qualité des régles apprises

~ RANDOM(S,7) renvoie de maniére aléatoire et en les supprimant de S (tirage sans remise), k
exemples de telle sorte que k; = 7(.5) ou Q(S) est le cardinal de I'ensemble S.

~ NOISE(S,p) perturbe les données en modifiant k; exemples (permutation des attributs ou des
pixels) de telle sorte que ko = pQ2(S)

~ LEARNING(D,F) est une méthode d'apprentissage déja paramétrée qui renvoie un jeu de régles
permettant d’inférer E lorsque I'on a D

~ VALIDATION(D, E,R) est une méthode validant une base de régles R par rapport a un jeu de
référence (D, E)

soit Q, := 0

pour i de 1 an faire
~ Altération des données d'apprentissage
(Data;, Expert;) := RANDOM(S, 0.5)
~ Altération des données de validation
(Data,, Expert,) := RANDOM(S, 1.0)
Datapn; := NOISE(Datay, pa)
Expertn; := NOISE(Expert;, pe)
Rules := LEARNING (Datay;, Experty)
Q@ := VALIDATION (Data,, Expert,, Rules)
Qu = Qu +Q

fin pour

Qu = %

Renvoyer Q.

Algorithme 2: Fonction BRUIT(S, n, p4, pe)
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F1a. 3.14 — Représentation de la transformation par ACP pour les sept premiéres composantes.

F1G. 3.15 — Les quatre premiéres composantes de ’ACP sur I'image de ROSIS.

avec 50 individus et 50 générations. La validation consiste & appliquer les régles sur une nouvelle base
d’exemples et & calculer la corrélation entre les classes obtenues par les régles et celles attendues par
I’expert.
Le graphique de la figure 3.16 présente le tracé des deux courbes suivantes :
1. Cdata = {le,Qd2, ceey Qdm} tel que Qdi = BRUIT(S, n, dz‘, 0)
2' Cempe'rt = {QEUQez? e ,Qem} tel que Qei - BRUIT(S7 na 07 ei)

otl le jeu de référence S a été fixé & 10% de ’ensemble de I'image, le nombre de tests n & 10 et d,y,
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F1G. 3.16 — Décroissance de la qualité en fonction du bruit.

FiG. 3.17 — Extrait d’une image hyperspectrale artificiellement bruitée & 50%.

= ey = 50%.

On note que la qualité des régles apprises décroit de 0.9 & 0.8 entre 0 et 5% de bruit injecté dans
les données brutes ou les données expertes. Ensuite, elle se stabilise entre 0.75 et 0.8. L’écart-type des
performances observées est de o¢,,,, = 0.042et oc,,,.,, = 0.026. A titre d’exemple, la figure 3.17 présente
un extrait de ROSIS artificiellement bruité a 50% (par mélange de pixels pour ne pas modifier les valeurs
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extrémes et ne pas perturber la phase d’initialisation, qui n’est pas testée ici).

Nous avons testé les algorithmes évolutionnaires qui seront présentés dans le chapitre suivant par
cette procédure (en remplacant la fonction LEARNING dans l’algorithme A2 par ces algorithmes) et nous
avons obtenu des performances similaires. On peut en conclure qu’une méthode évolutive est capable de
résister & un coefficient relativement élevé de bruit, méme si la qualité se dégrade déja a partir de 5%. Ce
type de constat n’est pas forcément surprenant : I’ajout de bruit, lorsqu’il n’atteint pas un seuil critique,
permet a certaines méthodes de généraliser [Singh, 1998]. L’explication est la suivante : parmi les signaux
présentés a ’algorithme, la plus grande partie est cohérente, tandis que l'autre apparait complétement
décorrélée. Quelle que soit la performance obtenue par les régles, la meilleure note sera toujours attribuée
a la régle ayant capturé le maximum d’informations cohérentes, car nous avons rendu son expressivité,
et donc la quantité d’informations qu’elle pouvait mémoriser, trés restreinte.

A titre de synthése, nous devons remarquer que le bruit présenté ici n’est pas un bruit naturel.
Dans les situations réelles, le bruit est fortement corrélé au type d’objet soumis au capteur, ce qui
peut représenter une difficulté supplémentaire. Notamment il est possible de concevoir des filtres qui
élimineraient un bruit aléatoire linéaire ou gaussien comme celui présenté dans cette étude et qui seraient
inefficaces avec un bruit réel. La modélisation d’un tel bruit étant relativement complexe, les tests les plus
fiables se réalisent directement avec les données réelles. Pour nos expérimentations, la base de données
d’images dont nous disposions possédait de nombreux défauts. Notamment, des différences de contraste
ou de luminosité ont pu étre observées aprés recalage, en plus des imperfections atmosphériques. Pour
éviter de perturber nos algorithmes, nous avons travaillé au cas par cas, en collaboration avec les experts
de terrain, pour éliminer, découper ou améliorer la qualité des bandes par des méthodes statistiques
disponibles dans certains logiciels commerciaux.

3.6 Conclusion

Ce chapitre a présenté quelques échantillons de données brutes et de données expertes avec les princi-
pales caractéristiques qui leurs sont associées. Nous avons vu que ces données étaient trés volumineuses et
complexes, et nous avons donné la liste des difficultés qui peuvent perturber un algorithme de classifica-
tion en conjonction avec les principaux pré-traitements disponibles pour les contenir. Notons que certains
pré-traitements peuvent induire une perte d’information dans les données. Des techniques récentes, uti-
lisant des données multi-sources et multi-expertes permettent parfois de contourner ces difficultés mais
introduisent en méme temps de nouvelles approximations. Dans certains cas, nous ’avons montré lors
de l'expérimentation précédente ou des expérimentations effectuées sur du bruit réel (certaines seront
détaillées dans le chapitre 7), un bruit aléatoire ne perturbe pas, voire améliore les capacités d’apprentis-
sage d’un algorithme évolutif : leur principal point fort est leur tolérance au bruit (robustesse). En effet,
nous avons présenté deux études, I'une concernant I’ACP, autre décrivant un protocole de validation
permettant d’évaluer le degré de robustesse des algorithmes, dont nous parlerons dans ce mémoire, au
bruit. Nous en avons conclu que, malgré les difficultés rencontrées avec ’ACP sur une image de ROSIS,
il était possible d’envisager 1'utilisation de méthodes génétiques sur des données bruitées. Le chapitre
suivant détaille notre approche ainsi que les principes que nous avons développés pour la mise en place
de notre architecture d’apprentissage.



Chapitre 4

Concepts de base des classifieurs

4.1 Approche proposée

Aprés de nombreuses expérimentations, nous avons considéré 'utilisation des méthodes évolutives
comme étant acquise, tant pour leur capacité a résoudre les problémes posés par la complexité des données
que pour proposer un modéle robuste. Nous détaillons dans ce chapitre les principes de notre processus
d’apprentissage. Nous verrons différentes représentations pour les régles et les fagons de les appliquer
sur les données brutes pour obtenir les classifications. En effet, de telles données nécessitent I’étude
approfondie des représentations des régles afin de fournir & la fois une base de connaissances fiable mais
aussi utile & D’expert, c’est-a-dire respectant les nombreux critéres définis dans la section 1.2 (page 5),
comme la compréhensibilité, la robustesse face aux données ou la cohérence, pour n’en citer que quelques-
uns. Une fois la représentation choisie, et seulement & ce moment-la, des algorithmes adaptés pourront
étre construits.

Notre approche se distingue particuliérement des autres méthodes d’analyse mises en ceuvre dans
le domaine de la télédétection. Les méthodes traditionnelles de classification déterminent, & partir d’une
image satellite brute, des associations entre ’ensemble des pixels de 'image et certaines classes théma-
tiques grace & une analyse supervisée ou non. Cependant, le processus doit étre réitéré lorsque I'image
est modifiée ne serait-ce qu'un peu, c’est-a-dire lorsque ’on change de zone géographique, de position
(rotation, ...), voire de résolution (images multi-échelles).

A la différence de ces méthodes, nous voudrions disposer de ce que ’on nomme des régles de clas-
sification. Le systéme doit produire de lui-méme une certaine forme d’information permettant d’induire,
A partir des mémes pixels que dans le cas des procédés classiques, les classes thématiques des zones
couvertes. Cette forme d’information doit étre, en plus, le plus possible réutilisable sur une partie non
traitée de I'image ou sur toute autre donnée se rapprochant de I'image analysée, sans devoir recommen-
cer & chaque fois le long processus d’apprentissage. Ces régles devront, aprés la phase d’apprentissage,
s’évaluer rapidement (on appelle évaluation I'application d’une régle sur les pixels de I'image afin d’en
déterminer les classes respectives) et tenir compte de toute I'information spectrale que peut contenir un
pixel. Enfin, elles devront étre mazimalement spécifiques, c’est-a-dire qu’elles couvriront le maximum de
pixels de la classe correspondante, en évitant au maximum les pixels d’une autre classe.

La phase d’apprentissage ne doit pas, d’une part, étre liée au type de la zone étudiée (par exemple
urbaine ou rurale), mais se conformer et s’adapter aux données soumises. D’autre part, elle doit produire
des régles de classification dans un temps raisonnable, mais sans nuire d’aucune facon a leur qualité. Ces
deux derniers critéres peuvent sembler de prime abord contradictoires, mais nous verrons plus loin les
nombreuses méthodes de notation et de validation qui ont été mises en place pour rendre compte de la
performance des régles.

Enfin, les régles produites devraient étre simples, c’est-a-dire que le nombre de contraintes qu’elles
imposent afin de discriminer les pixels doit étre trés réduit. Les principales qualités des régles simples
sont la vitesse d’évaluation en exploitation, leur compréhensibilité permettant la découverte ou la mise a
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jour de la connaissance experte, et leur aptitude potentielle pour la généralisation. En effet, le principal
intérét de ces régles de classification doit étre leur réutilisation dans un domaine ou la fréquence d’analyse
des images est intensive et routiniére (par exemple, pour la gestion des flux vidéo). Cependant, nul ne
garantit que les structures de données étudiées ici (qui d’une certaine maniére présagent de la qualité des
résultats) permettront une réutilisation totale : cela peut en effet dépendre des conditions de prise de vue
(date, saison, conditions d’illumination, ...), ou de divers autres facteurs.

Dés lors, il s’agit de répondre & deux questions essentielles :

1. Quelles sont les meilleures représentations pour les régles de classification ?

2. Quels sont les meilleurs algorithmes pour l'apprentissage, la manipulation et éventuellement le
raffinement de ces régles de classification ?

La réponse a la premiére question est ’objet de ce chapitre, tandis que 'autre sera développée dans
le chapitre suivant.

Matériel Prétraitement Extraction de regles

 cropping, égalisation
* corrections
| Données brutes | m=fp | atmosphériques
 suppression des
bandes bruitées

« conversion dans un
format acceptable
| Données expertes |* - sélection des jeux .
d'apprentissage et de w N
test e

F1a. 4.1 — Schéma général du processus d’apprentissage.

Exploitation Validation

| Image brute |

v

» | Classification

Validation :
* » Comparaison

« Evaluation

| Image classifiée | H | Image classifiée par l'expert

F1G. 4.2 — Schéma général du processus de validation.

La figure 4.1 présente le schéma général de notre processus d’apprentissage. Aprés un ensemble de
pré-traitements, les données brutes et expertes sont analysées par un programme d’apprentissage. Son
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role est d’extraire un certain nombre de régles modélisant une fonction qui permet, & ’'aide d’un en-
semble de descripteurs caractéristiques d’une donnée brute (valeurs spectrales des pixels, ...) de retrouver
des informations sur la classe de cette donnée (qualitatives, quantitatives, statistiques). Ces régles sont
stockées dans une base de régles et y attendent la phase d’exploitation. Cette phase, présentée dans la
figure 4.2, se compose d’une partie classification et d’une partie validation, permettant de dégager un
certain nombre de statistiques, notamment des mesures de qualité sur les algorithmes employés ou les
résultats produits.

La section suivante présente quelques rappels sur les différents types de classification. La section 4.3
présente les termes que nous avons définis pour décrire le formalisme de nos régles, exposé dans la
section 4.4. La section 4.5 présente ’algorithme général que nous allons employer, suivi d’une présentation
des mesures de qualité utilisées avant ou aprés apprentissage (section 4.6).

4.2 Rappels sur les différents types de classification

Avant d’aborder les sections suivantes, nous devons prendre en compte le fait qu’il existe plusieurs
types de problémes de classification [Sousa et al., 2003; Huguenin et al., 1997]. L’existence de différents
types dicte a la fois les principes du processus d’apprentissage (nous serons confrontés a plusieurs types
d’expertises) et ceux de la représentation des régles (les régles prendront plusieurs types de décisions).

— La classification dure' (ang., hard classification). Les différentes classes forment une partition pure

de I'image. Pour chaque pixel p, sa classification f,(p) (selon ’algorithme) pour la classe experte
¢; est soit 0, soit 1, sans recouvrement possible :

fe;(p) ={0,1} pour i =0,...,n avec ch%(p) =1 (4.1)

ol n est le nombre de classes.
Elle est aussi appelée classification one-by-one car chaque pixel est affecté & une et une seule classe.

— La classification douce® (ang., soft classification). Les différentes classes forment des ensembles qui
peuvent se recouvrir ou laisser des pixels non classés :

fe;(0) ={0,1} pour i =0,...,n (4.2)

— La classification floue (ang., fuzzy, subpizel ou one-by-N classification). Un vecteur de coefficients
est affecté & chaque pixel indiquant, pour chacune des classes, la composition supposée de cette
classe pour ce pixel :

fe;(p) ERpouri=0,...,n avec Z fa(p) =1 (4.3)

Les méthodes pratiquant la démiztion spectrale (ang., unmizing) sont typiquement des classifieurs
flous. Une autre interprétation existe pour la classification floue, appelée classification probabiliste.
Dans ce cas, la valeur f,,(p) représente la probabilité qu’un pixel soit de la classe ¢; et peut per-
mettre en apprentissage supervisé d’orienter la suite de la classification.

— La classification a intervalles flous (ang., fuzzy-intervals classification). Nous avons développé
un quatriéme type de classification, car il répond a des besoins spécifiques pour les experts. Un
intervalle réel est associé & chaque pixel p indiquant ’estimation de la composition d’une classe
donnée pour ce pixel :

fe:(p) € lac,,be,] pour i =0,...,n avec ag,,b., € R (4.4)

INous utiliserons dans la suite le terme classification hard.
2Nous utiliserons dans la suite le terme classification soft.
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Ce type de classification généralise les types précédents. En effet, elle correspond & une classification
soft si ac, = be;, = {0,1}, et & une classification floue si a., = b,,. Contrairement aux représentations
précédentes, celle-ci permet de représenter de nouveaux types d’expertise, comme par exemple « les
proportions respectives des classes A, B et C dans le pixel p ne sont pas connues, mais il n’y a pas
la classe D ». Une classification soft ou floue doit préciser la proportion exacte pour chaque classe,
alors que la classification par intervalles flous permet & ’expert d’indiquer une imprécision totale
(intervalle [0;1]) ou partielle (intervalle [0;0.5], par exemple) pour une classe. Certaines expertises,
qui doivent étre rejetées dans le cadre des autres représentations, peuvent ici étre utilisées.

Le tableau 4.1 présente quelques exemples de classifications pour un pixel donné et trois classes (A,
B et C).

Classification | Exemple Description

Hard A =100%, B = 0%, C = 0% De la classe A

Soft A =100%, B = 0%, C = 100% Disjonction d’expertises

Floue A =23%, B =12%, C = 65% Conjonction d’expertises

A intervalles A € ]0;100], B € [50;100], C € [0;0] La proportion de la classe A est inconnue, celle de
la classe B est d’au moins 50% et la classe C est
indéniablement absente

TaB. 4.1 — Différents types de classification.

La nature du terrain réel étant différente de celle observée sur les images de télédétection, nous
avons observé que l’amélioration de la représentation de I'information utilisée en expertise (c’est-a-dire
passer d’une représentation hard & une représentation floue, par exemple), qui se rapprocherait d’une
représentation réaliste, peut conduire a I’amélioration des performances.

4.3 Entités manipulées par les régles

Cette section permet d’aborder la définition des termes que nous utiliserons par la suite pour dé-
crire de maniére générique une technique de représentation des régles, et les représentations que nous
avons choisies, en particulier. Beaucoup de notions exposées ici sont connues en statistique, mais nous
soulignerons les particularités liées a la classification d’images.

Nous devons commencer par définir formellement les entités que nous manipulerons. Comme nous
I’avions souligné dans la section 3.2, les images sont définies dans un systéme comportant trois dimen-
sions, la largeur (X), la hauteur (V') et la dimension spectrale (S). Il en existe de nombreuses autres (par
exemple, les dimensions temporelles, stéréoscopiques, etc) que nous n’allons pas aborder dans cette sec-
tion. Nous définissons un 1-échantillon (nommé simplement échantillon dans la suite) comme une donnée
de base, indivisible et représenté par des types simples dans une ou plusieurs des dimensions de ’espace
des données (booléens, entiers, réels ou vecteurs contenant des valeurs de type pré-cité). Il est indivisible
dans le sens ou I’échantillon ne peut pas étre exprimé dans un systéme de dimensions différent ou plus
simple, en tout cas pas de maniére plus naturelle. Par exemple, un pixel de données brutes représentant
un spectre de radiance est naturellement représenté comme ’ensemble des valeurs de radiances (réelles)
le long de la dimension spectrale S :

<pizel> = [$1,82,53,.«,8iy- -, Sn] (4.5)

ou n est le nombre total de bandes dans ’image, et s; appartient & un corps spécifique pour S, par
exemple R.

Ainsi, pour créer un échantillon représentant un pixel donné, nous avons agrégé la dimension spectrale
S et nous utilisons des valeurs distinctes exprimées dans toutes les autres dimensions (X,Y) pour créer
d’autres échantillons. Dans notre modéle, S est dite dimension d’agrégation et X et Y sont appelées des
dimensions de parcours. Nous pourrions tout aussi bien créer un échantillon de données en considérant la
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premiére ligne de chaque image comme une donnée atomique, et Y et .S comme des dimensions de parcours.
Cependant, ce découpage n’est pas naturel et ne correspond pas & un usage adapté a la télédétection.
Nous définissons donc chaque échantillon comme étant ’ensemble de toutes les valeurs exprimées dans
les dimensions d’agrégation. Cette considération est surtout utile pour traiter des données multi-sources
ou multi-expertes : I’ajout d’une image supplémentaire est alors simplement vu comme l’ajout d’une
dimension d’agrégation si ’on souhaite traiter les données en paralléle, ou d’'une dimension de parcours
si 'on souhaite traiter les données en séquentiel. Il existe deux types d’échantillons : les échantillons
bruts et les échantillons experts. La réunion d’un échantillon brut avec un échantillon expert est appelé
exemple d’apprentissage ou exemple de validation. L’ensemble des échantillons est une partition de ’espace
complet des données. Nous rappelons que, comme dans la terminologie des systémes de classifieurs, ce
qui est externe au systéme d’apprentissage est appelé environnement.

4.4 Formalisme des régles

Nous pouvons maintenant définir la notion de régle. Elle représente 'unité la plus élémentaire de la
connaissance traitée par un algorithme a base de classifieurs. Typiquement, une régle prend en entrée
un échantillon brut et renvoie une valeur booléenne (régle de décision), entiére (régle de classification),
réelle (régle de démiztion spectrale) ou de n’importe quel autre type. Elle doit attribuer a I’échantillon en
question une description claire et compréhensible pour n’importe quel expert du domaine. Une régle ou
un ensemble de régles représentent & eux seuls la connaissance apprise durant et & la fin de ’apprentis-
sage, et sont indépendantes en exploitation et en validation. L’indépendance signifie que les paramétres
contenus dans une régle doivent conduire un algorithme générique (ou un étre humain) & pouvoir traiter
n’importe quel nouvel échantillon brut, dans une phase que ’on qualifiera d’interprétation automatique
ou d’application. L’expertise automatique produite est alors facile & comparer & ’échantillon expert cor-
respondant afin de valider la régle. On peut ensuite éventuellement associer & la régle des paramétres
externes (qualité, erreur, statistiques diverses) permettant de la caractériser de maniére générale pour
Iinterprétation suivante. Il est & noter une différence importante entre une régle de classification et les
classifieurs de Holland [Holland, 1986] : pour pouvoir garantir 'opérabilité des régles sur de nouveaux
échantillons, elles devront étre indépendantes des exemples, notamment de leur ordre de passage, c’est-
a-dire concrétement ne pas altérer I’environnement du systéme ni conduire a la modification de registres
ou de mémoire internes suite & leur application. Attacher un contexte a ces régles permettrait de don-
ner au systéme un comportement anticipatif, 'autorisant & modifier ou affiner sa réponse en fonction
de I’évaluation de plusieurs échantillons précédents. Malheureusement, la classification d’images se préte
mal & la transformation de I’environnement en une machine & états : les capacités de généralisation de
I’algorithme en seraient amoindries. De toute facon, la plupart des informations importantes, y compris
conteztuelles (échantillons voisins), peuvent étre intégrées sous la forme d’attributs supplémentaires pour
I’échantillon courant.

En reprenant la terminologie des systémes de classifieurs, le formalisme général d’une régle de clas-
sification est le suivant :

<régle> = <condition> — <action> (4.6)

Dans notre cas, ce formalisme correspond a la régle suivante :

si <pizel> satisfait <condition> alors <classe thématique> (4.7)

Plus précisément, cela signifie que si un échantillon brut satisfait la condition donnée, il devra étre
considéré comme appartenant a la classe spécifiée par la régle.

On remarque immédiatement que la partie <condition> joue un role extrémement important. Elle
seule conditionne réellement la performance de la régle, pour deux raisons évidentes :

1. Si le formalisme de représentation de la condition est trop restrictif, il y a un risque de produire des
régles trop spécifiques, voire incohérentes. Destinées a étre générées automatiquement par 1’algo-
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rithme, il y aura peu de chance que toutes les contraintes présentes dans la condition soient activées
en méme temps pour que le pixel satisfasse la régle.

2. Si a l'inverse la syntaxe est beaucoup trop générique, un allongement du temps de recherche et des
problémes de recouvrements apparaitront : de nombreuses régles seront actives pour le méme pixel
et la performance de ’algorithme risque d’étre dégradée.

La partie <condition> de la régle fait appel & un certain nombre de variables, prenant leurs valeurs
directement dans les échantillons bruts, et d’opérateurs calculant de nouvelles valeurs avec ces variables
qui sont soit considérées comme le résultat final de la condition, soit un résultat intermédiaire & destination
d’autres opérateurs. Nous proposons que ces opérateurs et variables soient regroupés au sein de différentes
structures. Nous en distinguons plusieurs.

Les structures plates sont des fonctions classiques n’utilisant qu’une seule variable par partie <condi-
tion>, par exemple :

<condition> = <wvariable> <opérateur> <constante> (4.8)

Les structures arborescentes ou arbres de calcul permettent de représenter des équations, voire des
programmes complets, & I'image de la programmation génétique. Chaque nceud correspond & un opérateur
et chaque feuille & une variable ou un opérateur d’arité nulle? (constante). De fait, un arbre de calcul se
décompose en trois niveaux :

— Le sommet. C’est un opérateur évalué en dernier dans I’arbre qui renvoie le résultat correspondant
au type de la régle (un indicateur de la classe de I'objet pour une classification, un pourcentage
indiquant la proportion d’une classe donnée dans un pixel pour une régle de démiztion spectrale, ...).
Le type de cet opérateur est déterminé par le probléme & résoudre. Un type booléen sera typique de
la résolution d’un probléme de classification soft, tandis qu'un type réel sera typique d’un probléme
de classification floue.

— La partie interne. I’équation ou le calcul proprement dit. Chaque nceud est un opérateur prenant
en paramétre un ou plusieurs arguments (entiers, réels, ...) et renvoyant un argument a destination
de 'opérateur suivant.

— Les feuilles. Ce sont des opérateurs qui prennent directement leurs arguments parmi les valeurs
des échantillons. Ces valeurs peuvent étre de différents types selon qu’elles doivent caractériser
des valeurs de radiance, des altitudes, des températures, ... Ces opérateurs sont spécifiques a
Papplication cible et doivent étre créés en conséquence (fonctions renvoyant un spectre, indicateur
de la texture dans le voisinage du pixel courant, date de la prise de vue, corrélation entre le spectre
d’un pixel et un spectre de référence, ...).

Nous pouvons répartir les opérateurs correspondant aux noeuds des arbres en deux catégories, en
fonction de leur niveau d’interaction avec les données : les opérateurs context-free et les opérateurs
context-dependent. Les opérateurs context-free ne sont pas liés & une application particuliére (opérateurs
arithmétiques, booléens ou algorithmiques). Un algorithme capable de manipuler des arbres ne conte-
nant que des opérateurs context-free est adaptable & n’importe quel jeu de données. Les opérateurs
context-dependent bruts sont liés & l'interprétation des échantillons bruts (GetValue(), GetSpectrum(),
ComputeTexture(), ...). Ils peuvent faire appel & des algorithmes plus ou moins évolués (segmentations
basiques, reconstruction géodésique, ...) afin de transformer un échantillon en valeur exploitable. Enfin,
les opérateurs context-dependent experts ne travaillent qu’avec les données expertes. Ils permettent de dé-
couvrir certaines propositions sans utiliser la moindre donnée brute. Par exemple, concernant une image,
la proposition suivante « les arbres sont souvent ronds » peut étre exprimée par la régle :

si Circularité ( Région-Conneze (p)) > s alors Classe (p) = Arbre (4.9)

ol p est un pixel et s un seuil représenté par une constante réelle. Cette proposition peut étre
découverte par un algorithme d’apprentissage uniquement & partir d’une image de classification experte,
I’objectif de I'algorithme étant d’affecter une valeur suffisamment élevée pour le seuil de la circularité s.

3L arité est le nombre de paramétres d’une fonction. L’arité de “+” est de deux, I’arité de 7 est de 0.
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Cependant, la découverte de ce type de régles, que 'on qualifiera plutét de prédicats, dépasse le cadre de
la classification d’images et ne sera pas abordé ici.

Enfin, des structures plus complexes peuvent étre envisagées (réseaux de neurones, génomes, ...).
Néanmoins, il faut garder a I’esprit que certains critéres décrits dans la section 1.2 (page 5) dépendent de la
bonne structuration des régles, comme par exemple la compréhensibilité ou I'indépendance algorithmique.
Chaque structure facilite ou non 'utilisation des régles comme individus d’un algorithme évolutionnaire
(création, croisement, ...). La capacité de découverte des opérateurs génétiques, que nous décrivons en
détail dans I'annexe C, est donc clairement liée & ’expressivité mais aussi & la simplicité de la structure
retenue pour les régles.

4.5 Deécouverte des régles

4.5.1 Un processus générique

Le formalisme général des régles présenté dans la section précédente permettant de décrire les connais-
sances du domaine est adapté au probléme de la classification d’images. Les régles sont expressives et
simples pour l'expert, en revanche, elles imposent & l'algorithme d’apprentissage une complexité assez
élevée lors de la découverte automatique de la kyrielle de paramétres ou de valeurs diverses qui les com-
posent. Par exemple, si nous choisissons une représentation arborescente pour discriminer un spectre de
référence parmi tous les autres possibles, il faut une valeur de confiance — ou plutét un intervalle de
confiance — pour chacune des longueurs d’onde de ce spectre, ne sachant pas a I’avance (dans le cas géné-
ral) quelle est la liste des longueurs d’onde permettant de discriminer deux classes. Dans le cas simple de
SPOT (3 bandes), cela revient & demander a I’algorithme de trouver un point dans un espace a 6 dimen-
sions. Ce nombre de dimensions explose rapidement dans le cas de ’hyperspectral ou si la représentation
est un tant soit peu un peu plus évoluée.

On le voit donc, un algorithme déterministe de découverte de ces régles est tout simplement proscrit.
De la méme facon, un parcours exhaustif est de toute évidence impossible. Nous avons donc choisi ’algo-
rithmique génétique, connue pour sa robustesse a traiter les problémes d’optimisation et pour ses qualités
puissantes d’exploration et de recherche [Eiben et Smith, 2003]. Ce modeéle d’apprentissage stochastique a
déja fait ses preuves pour les problémes NP-complets [Ruttkay et al., 1995], dont la découverte de régles
de classification est un exemple. Avant de présenter le schéma général de notre algorithme, plusieurs
notions fondamentales, s’articulant autour de 1’individu, de la fonction d’évaluation et de la génération
de la population suivante doivent étre définies.

Ainsi, algorithme évolutionnaire introduit, comme dans le modéle de Darwin, une notion d’individu
correspondant & une structure atomique qui doit porter toute l'information (l’ensemble est nommé gé-
notype) permettant de caractériser son comportement, ses manifestations externes (nommées phénotype)
dans un environnement donné [Goldberg, 1991]. Dans notre cas, I'individu en question est incarné par une
régle permettant, grace & tous les paramétres caractéristiques d’un échantillon de données (par exemple,
les valeurs de radiance d’un pixel), de déterminer la classe thématique des pixels de I'image. Un individu
représente a la fois le moyen de mémoriser les contraintes & optimiser au cours de I’apprentissage, et
la solution au probléme. Ces informations sont stockées conjointement en un ensemble de génes appelé
chromosome (structure contenant l'information utile) [Michalewicz, 1996].

Afin d’avoir une exploration équiprobable de I’espace, il nous faut une armée, une population diver-
sifiée de tels individus. Pour détecter dans cette population les individus les mieux adaptés au probléme
posé, ou & 'inverse éliminer les moins bons, l’algorithme génétique utilise une fonction de qualité (fitness),
dont le role est d’affecter & chaque individu une note en fonction de sa capacité a répondre au but attendu
relativement aux autres individus [Eiben et Schoenauer, 2002] : dans notre cas, les meilleurs individus
sont tout simplement ceux qui peuvent corréler au mieux la réponse de la régle avec le résultat attendu
par 'expert.

Enfin, une stratégie doit étre employée pour manipuler directement cette population : au fil des
générations de l'algorithme certains individus sont conservés, d’autres sont éliminés, et d’autres encore
donnent naissance & de nouveaux individus plus adaptés. Une génération couvre un cycle de l’algorithme,
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c’est-a-dire 1’évolution d’une population compléte. Ce processus permet d’explorer la diversité des com-
portements possibles et d’en découvrir de nouveaux encore plus performants que ceux des parents. On
distingue trois opérateurs génétiques importants concernant le passage d’'une génération a l'autre : les
opérateurs de sélection, sélectionnant les individus pour les opérateurs de variation ou pour le rempla-
cement, les opérateurs de variation, permettant d’obtenir un (croisement) ou N (mutation) nouveaux
individus & partir d’une sélection (avec remise) de parents et 1’opérateur de remplacement qui sélectionne
les individus (sans remise) pour la génération suivante [Goldberg et Deb, 1991].

ALGORITHME A3
PROCESSUS DE DECOUVERTE DES REGLES

~» R est une regle de classification et I'; (i =0, ..., n) est une population de régles

~+ Création d’'une regle en fonction des exemples
:= REGLEINITIALE (ezemples)
~- Initialisation d’'un pool aléatoire depuis R
Iy := INITIALISATION(R)
1:=0
répéter
~ Calcul de la fitness pour chaque regle
EvaLuaTION(T);)
Ity : = CroSEMENT(T, p, ) U CoPIE(T;, 1 —p, )
Iip1 : = MUTATION (T 11, D)
~ Nouvelle génération de régles
Tit1 - = REMPLACEMENT(T;,T;41)
1:=1+1
jusqu’a ce que CRITEREDETERMINAISON(T;, i) = vrai
~+ Sélection de la meilleure régle
R := MEILLEUR(T;)
Résultat : R, la régle de classification pour une classe donnée

Algorithme 3: Fonction DECOUVERTE

Ces notions fondamentales sont la clef de voite de notre algorithme évolutionnaire dont le déroule-
ment général est présenté dans I’algorithme A3.

Notre systéme de classifieurs est en fait un ensemble de classifieurs indépendant, répondant chacun &
une classe précise (de maniére qualitative ou quantitative), et évoluant de maniére distincte. Le résultat
final est donc une population de régles comprenant soit une, soit plusieurs régles décrivant chaque classe
donnée. Il existe plusieurs raisons pour le choix de I'indépendance des régles, plutot qu'un modéle de
type compétitif : les régles les plus efficaces dans la génération courante ne doivent pas perturber les
autres régles qui mettraient, au cours des générations, plus de temps pour s’améliorer. Dans un modéle
compétitif, la fonction de qualité évalue simultanément tous les individus et les plus mauvais risquent
d’étre éliminés prématurément. L’indépendance autorise 1’élimination d’un ou plusieurs classifieurs au
sein de la population de régles, sans que la variation de qualité souffre d’un rapport trop étroit aux autres
classifieurs, ni méme devoir attendre une convergence de leur part vers le méme niveau de performance.
Enfin, elle garantit 'impartialité des mesures de qualité obtenues pour une classe thématique donnée.

4.5.2 Un algorithme efficace

Au sens le plus large, 'objectif de toute méthode ou tout algorithme génétique est d’améliorer
la compétitivité des individus. Cependant, il est bon de noter dés & présent, le fait que cet objectif
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peut donner lieu a des interprétations bien distinctes. Plusieurs critéres d’optimisation sont possibles.
Doit-on optimiser la qualité des solutions ou le temps d’apprentissage (contradiction souvent observée
en algorithmique génétique) ? Il est par exemple connu qu’il est préférable d’avoir un grand nombre
de générations pour un faible nombre d’individus que l'inverse, pour le méme temps d’apprentissage
[Goldberg et al., 1992; Ceroni et al., 2001]. Malheureusement, avec un faible nombre d’individus, les
recombinaisons entre parents sont moins nombreuses, ce qui empéche ’exploration de configurations
structurelles trop complexes dans le cas d’une représentation arborescente. Nous avons dégagé une liste
de facteurs pouvant réduire la complexité de notre systéme :

— Les facteurs dépendants de 'expert : celui-ci peut inclure, outre les échantillons, différentes exper-
tises a l'intention de l'algorithme. La taille estimée des régles de classification peut étre introduite
comme pression de sélection (lors du calcul de la fitness ou dans les opérateurs de sélection). Le
choix des opérateurs intervenant dans les régles peut limiter I’espace de recherche (indices & utiliser
pour trouver une classe donnée, ...). L’élagage des échantillons bruts (sélection de bandes) et ex-
perts (sélection des points d’apprentissage, réduction du nombre d’échantillons a utiliser en fonction
des classes, ...) limite lui aussi I’espace de recherche. Enfin, une interactivité durant ’apprentissage
est possible par la visualisation des taux d’apprentissage, la mise en place de conditions d’arrét
sur les taux d’erreur, la possibilité de modifier les paramétres en cours d’apprentissage, ou de geler
les modifications de certaines régles directement ou en fonction d’un paramétre de confiance.

— Le principe de fonctionnement de ’algorithme lui-méme, notamment des opérateurs génétiques.
L’opérateur d’initialisation est optimisé par rapport aux données (plusieurs exemples seront pré-
sentés dans le chapitre suivant) et le critére de terminaison est calculé & partir du nombre de
générations et de la convergence de la fonction de qualité des régles. De plus, le taux de mutation
est modifié¢ en cours d’apprentissage. Enfin, I'utilisation du niching dans ’AG permet de main-
tenir une certaine diversité dans la population mais aussi de découper cette population en blocs
d’individus selon leur contribution au probléme a résoudre.

— Les paramétres de Palgorithme : Wilson [Wilson, 1998] a montré que la complexité d’un probléme
n’est pas proportionnelle & la taille de son espace de recherche mais au nombre de classifieurs per-
mettant d’exprimer une généralisation. Des techniques d’élagage des régles existent, et 'une d’elle
va étre présentée dans le chapitre 6. De nombreux paramétres influencent la diversité des régles
et I’exploration de ’espace de recherche, ainsi que les conditions de convergence de 1’algorithme.
Certains d’entre eux seront présentés avec les algorithmes eux-mémes.

En fait, la complexité de traitement par I’algorithme évolutionnaire dépend surtout de la structure des
régles et non de ’algorithme lui-méme. Nous donnerons dans la suite, lorsque cela s’avérera pertinent,
la complexité en mémoire des solutions (en terme de taille des individus), ainsi que la complexité de
Papprentissage (temps et nombre de générations), en regard de chacune des représentations proposées.

4.5.3 Une architecture et des opérateurs adaptés

Bien que le modéle vu jusqu’ici soit générique et puisse s’appliquer & de nombreux problémes, notre
objectif est de construire une architecture et des opérateurs adaptés aux données de télédétection, car
celles-ci présentent une complexité et un caractére bien particulier, qu’il faut prendre en compte. Le
processus générique de découverte des régles présenté dans Ialgorithme A3 est marqué par la spécificité
du probléme de classification & plusieurs niveaux :

— tout d’abord, lors de la création des régles : que ce soit de maniére automatique ou par I’expert, la
création de la premiére régle est guidée par les données. Selon la représentation choisie pour cette
régle, certains parameétres sont initialisés de telle sorte que la solution réelle du probléme se trouve
suffisamment proche, en terme de recherche combinatoire, du premier individu. Cette technique
est nommeée look-ahead creation.

— ensuite, & travers la fonction d’évaluation qui intégre une gestion des individus spécifique au
probléme & résoudre, concernant notamment le nombre de nceuds ou la profondeur des arbres de
calcul lorsqu’il existe une information sur la complexité supposée de ces arbres. Par exemple, la
représentation d’un indice de végétation nécessite un arbre de moins de 8 nceuds.
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— enfin, au niveau de la pression de sélection (opérateurs de sélection de parents ou pour le remplace-
ment) : nous présentons dans ce chapitre une série de mesures de qualité qui permettent d’évaluer
automatiquement la lisibilité des régles ou I'’homogénéité de la population, en fonction de critéres
importants en télédétection (matrices de confusion, validation graphique, compacité des classes,
structure des régles, etc).

Ce modéle nécessite I’emploi de diverses fonctions génétiques comme la fonction d’évaluation, 'opé-
rateur d’initialisation, de croisement, de mutation, de sélection, de recyclage générationnel et de conver-
gence. Ces opérateurs sont assez généraux et sont utilisés dans divers problémes. Nous les avons décrits
en détail dans I’annexe C. Parmi ces opérateurs, la fonction fitness a pour role d’évaluer les individus
par rapport aux autres individus de la population. Pour cette évaluation, la fonction nécessite la mise au
point d’un certain nombre de mesures de qualité, spécifiques ou non a notre approche. Nous les présentons
dans la section suivante.

4.6 Mesures de qualité

4.6.1 Calculées pendant ’apprentissage

Dans cette section, nous introduisons les mesures que nous avons définies pour évaluer la qualité
des classifieurs en cours d’apprentissage (elles sont utilisées par la fonction fitness, les opérateurs de
sélection, ...). Certaines de ces mesures sont génériques et peuvent étre utilisées dans d’autres problémes
de classification, d’autres sont spécifiques & la classification d’images de télédétection. Nous utiliserons
par la suite les termes qui sont d’usage, c’est-a-dire la terminologie anglaise.

4.6.1.1 Mesures basées sur ’expertise

En classification d’images, I’évaluation de I’apprentissage est habituellement basée sur une matrice
de confusion mettant en relation la classification proposée par I'expert pour chacune des classes C; avec
celle obtenue par les régles de classification. La figure 4.3 définit les variables nécessaires pour construire
les mesures de qualité qui vont suivre. La matrice de confusion posséde autant de lignes que de régles
différentes a traiter.

Quantité d'échantillons experts de la classe ...
Total (kj)
C, C, C, Qppa '
g C, FE:? PC?Z “es s PC?" Qajpa Q(Cl)
= o
£E28 |c| R Re
c 0>
c o @
@ ®
T ©° 3
w 2=
20
E58 : :
& .| R RS Qbpa Q(GCr)
QSEHS Q&ens o o o leens

Fia. 4.3 — Matrice de confusion permettant de calculer la précision et la sensibilité en comparant les
résultats des régles avec 'expertise.

Qaceur €St une mesure trés populaire évaluant la proportion d’échantillons correctement classés, par
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rapport a tous les échantillons, pour n classes :

C.
Yin Po)
Qaccur = n’L . (410)
> i1 UCi)

ou Q(C;) est le cardinal de I’ensemble C;.

La faiblesse de cette mesure est qu’elle prend en compte seulement les échantillons correctement
classés. Pour rendre les résultats de classification plus précis, trois mesures relatives ont été utilisées : la
précision Qppq (ang., positive predictive accuracy), la sensibilité Qsens (ang., sensitivity) et la spécificité
Qspe (ang., specificity).

La précision (Qppa) mesure, pour une classe donnée, la proportion d’échantillons correctement classés
par rapport aux échantillons classés par un classifieur :

Ci
i PC;
ppa n Ch

> k=1 Fe,
La sensibilité (ou taux de vrais positifs) Qsens mesure, pour une classe donnée, la proportion d’échan-
tillons correctement classés par rapport aux échantillons classés par 'expert :

(4.11)

C;
i PC

R O N

sens n C;

>k Po

La spécificité (ou taux de vrais négatifs) Qspe mesure la proportion d’échantillons correctement
classés comme n’étant pas dans une classe donnée, selon I'expert, :

(4.12)

n n C
i Zj:l,j;ﬁi Zk:l,k;ﬁi Pe, (4.13)
pe n n C;
Zj:l,j;éi i1 Fe;

Les opposés des deux mesures précédentes, 1 — Qgsens €t 1 — Qspe sONt respectivement appelés fauz
négatifs et faux positifs. Lorsqu’elles sont utilisées dans la fonction d’évaluation afin de guider I’appren-
tissage des régles, les quatre mesures ci-dessus peuvent donner une classification non fidéle au résultat
attendu par l’expert si la distribution des échantillons est telle qu’elle perturbe l'apprentissage, comme
nous le verrons dans la section 5.2.1.2 du chapitre suivant. Par conséquent, nous proposons une nouvelle
mesure, ajustée pour chacune des classes :

N}inal = Qgens + (1 - a) ! Z‘pe (414)

Cette mesure a quelques avantages : elle est indépendante de ’ordre de présentation des échantillons,

de la taille des classes et se calcule en temps linéaire quelque soit la complexité des données (nombre de
classes, nombre de bandes spectrales, nombre d’échantillons). Nous proposons alors, comme mesure de

qualité globale, une moyenne de chacune des mesures N}mal, pondérée par la taille des classes :

Notobal = Z?:l Q(CZ) ' N}inal
e > i UCi)

(4.15)

4.6.1.2 Mesures indépendantes de I’expertise

Meéme si la mesure experte fait foi pour départager les classifieurs, de nombreuses autres mesures ont
été utilisées en télédétection, notamment en non supervisé, pour juger de la qualité des classes obtenues.
A cause de leur indépendance par rapport a I'expertise, ces mesures permettent d’obtenir des classes qui
présentent certaines qualités (similarité intra-classe, ...) lorsque l'expertise fait défaut ou lorsqu’il s’agit
de la remettre en cause. Ces critéres sont employés en classification hard et se basent sur une distance
dist(o0;, 0;) définie entre deux échantillons (corrélation entre deux spectres, distance contextuelle, ...). Soit
{01,...,04,...,0n} N échantillons, K le nombre de classes, g, et oi le centre de gravité et la variance
de la classe C}, et o la variance du jeu de données complet. Nous utilisons les mesures suivantes :
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L’inertie intra-classe mesure la variance entre les échantillons et le centre de gravité de leurs classes
respectives [Halkidi et al., 2001] :

K K
I = Z Z dist(oi,gk)2 = Zak (4.16)

k=1ieCy, k=1
La compacité mesure le degré de regroupement des échantillons au sein de leurs classes [Halkidi et al.,

2001] :
C ! Yy (4.17)
mp=—- — .
p K =

Le critére Xie-Beni est un critére indépendant de 1’échelle des valeurs permettant de mesurer la sépa-
ration des classes [Xie et Beni, 1991] :

I
© N -min jek, iz (dist (g5, 9:))

XB (4.18)

Le critére WG est aussi un critére indépendant de ’échelle mesurant la séparation et la compacité des
objets des classes [Gancgarski et Wemmert, 2005] :

Iy

WG = - -
N - mIHOiECk,k’:,ék (dlSt(Oia gk’))

(4.19)

Nous avons surtout utilisé ces critéres comme mesure statistique de la qualité des classes obtenues
aprés ’apprentissage, mais ils peuvent étre employés dans la fonction d’évaluation pour servir le méme
objectif lors de la recherche des régles de classification. Les deux derniers critéres sont particuliérement
intéressants car ils sont indépendants de 1’échelle des données.

4.6.1.3 Mesures spécifiques a la représentation

Nous allons voir dans cette partie un autre type de mesures, basées sur la représentation des régles
plutét que sur le domaine d’application. Les critéres proposés ici s’appliquent sur chaque individu et,
par comparaison des notes obtenues au sein d’une population, ils permettent d’évaluer la diversité ou au
contraire I'homogénéité du pool génétique. Ces renseignements sont utiles pour la fonction d’évaluation
(on teste si un individu est conforme aux désirs de I’expert), les opérateurs de sélection ou 'opérateur de
convergence (renforcer les mutations génétiques si le pool est trop homogeéne, ou stopper 'apprentissage).
1l s’agit de voir un individu génétique comme un arbre sans tenir compte de la sémantique des nceuds.
Ces critéres sont donc utilisables avec toutes les représentations non plates (tels que celles des algorithmes
ICU ou GramGen décrits dans le chapitre suivant), sinon la mesure n’aurait pas d’intérét.

Habituellement, on dit qu’un arbre est parfaitement équilibré si, pour chacun de ses nceuds n, tous
les fils de ces noeud ont le méme nombre de nceuds. Un arbre de type AVL est un arbre bien équilibré
au sens des hauteurs, plutot que du nombre de nceuds. Malheureusement ces mesures ne permettent pas
de caractériser les arbres qui ne sont pas parfaits, comme c’est le cas des individus produits par une
méthode évolutive. Pour cela, nous avons développé plusieurs mesures caractérisant les arbres par une
note continue, permettant d’en avoir une évaluation graduelle. Nous proposons de regrouper ces mesures
en cinq classes :

1. Celles qui sont affectées a arbre complet sont désignées par un symbole isolé (X).
2. Celles qui sont affectées & un nceud n donné sont désignées par X™.

3. Celles qui consistent & prendre le maximum d’une mesure appliquée a I’ensemble des nceuds sont
désignées par Xy;.
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4. Celles qui consistent & prendre la moyenne d’une mesure appliquée a I’ensemble des noeuds sont
désignées par X 4.

5. Enfin, celles qui consistent & affecter une pondération & une mesure de nceud, qui décroit en fonction
de la profondeur de ’arbre, sont désignées par X.

Soit F'™ le nombre de fils du noeud n, T™ le nombre de descendants du nceud n et D™ la profondeur de
I’arbre & partir du nceud n. Nous commencons par rappeler les mesures connues en théorie des graphes :
— T est la taille de I'arbre en nombre de noeuds,
— Wiy est la largeur maximale de arbre (correspondant au nombre maximal de noeuds dans le méme
niveau),
— W4 est la largeur moyenne de ’arbre,
— L est le nombre de feuilles de ’arbre,
— D est la profondeur (maximale) de I’arbre.
Ces mesures sont utilisées par les algorithmes qui engendrent des représentations arborescentes en
plus de nouvelles mesures, que nous avons développées, et qui sont les suivantes :
- Np,,.. est le nceud ayant la plus grande profondeur D44,
-~ Np,,,, estle noeud ayant la plus petite profondeur D, ip,
— Si A" sont les sous-arbres engendrés par les fils n(i) du neeud n, la différence entre les profondeurs
minimale et maximale des sous-arbres est la différence de profondeur du nceuds n :

N = max [D”(i)] — min [D”(i)} (4.20)

— la différence de profondeur dégressive de n est :

(o0 si F" =0 wa
= n(i) .
C DY+ b siFm >0

ou n(i) est le fils numéro ¢ du neeud n.

La plupart de ces mesures, c’est-a-dire T', Was, Wa, L, D, Doz, Dmin, D} et D¢, peuvent étre
utilisées pour obtenir des caractéristiques intéressantes pour les individus engendrés depuis une repré-
sentation arborescente. Par exemple, la taille T' et le nombre de feuilles L peuvent étre utilisées comme
des mesures de complexité des arbres. La différence de profondeur dégressive caractérise la différence de
profondeur maximale des nceuds fréres, au fur et & mesure que ’on s’enfonce dans I’arbre.

La figure 4.4 illustre le procédé. Trois arbres sont présentés : le premier est correctement équilibré,
le second ne l'est pas, mais le troisiéme doit étre caractérisé comme ayant un équilibrage intermédiaire
par rapport aux deux premiers. Le calcul du critére D7 est analysé pour chacun des arbres. Le premier
obtient la note 0 (correctement équilibré), le second la note 2.25 (mal équilibré) et le dernier la note 1.

Ces mesures permettent de trier, de comparer et d’apprécier la diversité d’un pool génétique. De
plus, elles sont utiles pour la technique du sharing*. La détection de la convergence de la population vers
des optima locaux peut étre anticipée par I'analyse de la ressemblance des individus. D’autres mesures
sont, cependant utiles pour vérifier la qualité de I’apprentissage : nous les exposons dans la partie suivante.

4.6.2 Mesures calculées aprés ’apprentissage
4.6.2.1 Basées sur ’expertise

Comme lors de 'apprentissage, ot I’expertise est utilisée afin de guider la recherche de la population
de régles optimales, & la fin de 'apprentissage la qualité des régles produites peut étre mesurée grace a
une matrice de confusion (MC) obtenue a partir d’un jeu d’exemples qui ont été dissimulés a I’algorithme.
Soit M,, une matrice de confusion carrée définie par :

4Le sharing consiste a modifier la fitness utilisée par le processus de sélection pour éviter le rassemblement des individus
autour d’un mode dominant : on pénalise leur évaluation en fonction du taux d’agrégation de la population dans le voisinage
d’un individu. Les individus proches les uns des autres doivent partager leur fitness donc plus les individus sont regroupés,
plus leur fitness est faible [A525G, 2005].
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Arbre 1 Arbre 2 Arbre 3
1 1
1
2 3 2 3
2 '3
4 5 4 5 6 7
4 56 7
6 7 8 9
10 11
Di=5
D2=D3=4
Di=4 D%,:D?nax_ Di,=4-4=0
Dg=D§=2
D=3 D2=3 D=1 D{=..=Di=0
D2=D3=2 DY = Dhax—Dfin =3-1=2 DE=Dg=Dg=D¢=0
i = Dhas—Dh, =2-2=0 6=D=1 Dg=Dg=Dg =2
D& =Dk =0 Dy =Dy +1E0 = 225 Di=Dy+ DBt DE 2042522

Fi1G. 4.4 — Exemple de trois arbres et de la mesure D¢ associée & chacun des sommets.

mia1 0 Min
My =| s (4.22)
Mp1 - Mapm
oil m; ; est le nombre d’échantillons classés par les régles dans la classe 7 alors que 'expert les classe

dans la classe j. Les équations suivantes présentent deux mesures traditionnelles, la qualité globale G,
[Landis et Koch, 1977] et l'index x de Cohen [Cohen, 1960] :

(4.23)
5= mi (4.24)

=3 mi, (4.25)

A\ = Demt [ mic o me,]
n

o= A

K= Y

D’une fagon générale, beaucoup de problémes de classification sont solubles en mode hard. Cepen-
dant, certains algorithmes de conception moderne (comme ceux que nous verrons au chapitre suivant)
établissent des régles de classification de maniére paralléle pour les différentes classes, ce qui leur permet
de résoudre des problémes de type soft car un échantillon peut provoquer ’activation de plusieurs de ces
régles. Néanmoins, pour les besoins du calcul de la matrice de confusion, le résultat de ces algorithmes
doit étre converti en classification hard. Le choix des classes se fait alors de maniére déterministe, soit a

(4.26)

(4.27)
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partir d’un seuillage, soit en fonction d’un tournoi entre classifieurs, par exemple en utilisant certains pa-
ramétres comme leur fitness. Outre le fait que ceci biaise les mesures de qualité obtenues depuis la matrice
de confusion, il est relativement difficile d’extraire des informations, & titre instructif, d’une éventuelle
déficience du pool de régles. Nous avons alors développé un autre style de matrice de confusion, nommé
matrice de confusion directe (ang., Direct Confusion Matriz ou DCM) indiquant les performances réelles
de ces classifieurs sans le biais de I’algorithme de conversion d’un résultat flou en résultat hard. Elles sont
de méme taille que les matrices standards, mais le nombre réel d’activations des classifieurs correspondant
a la classe i est utilisé & la place de la valeur normalisée m; ; (dans I’équation 4.22). Ainsi, lorsque la
somme des colonnes des matrices standards est de 100%, un résultat différent peut étre obtenu dans une
DCM. Par exemple, si la somme est nulle, cela indique que la classe n’a été apprise par aucun classifieur,
alors qu’avec la méthode de conversion déterministe, il y a une probabilité non nulle de sélectionner la
bonne classe de maniére totalement artificielle! On peut donc considérer que la DCM constitue un test
plus difficile pour des algorithmes de classification soft ou floue. Toutes les mesures présentées ici (G e
et k) peuvent étre appliquées sur une DCM.

4.6.2.2 Validation graphique

L’inconvénient des CM ou des DCM est le fait qu’il est difficile d’extrapoler depuis une matrice de
confusion la localisation géographique — & destination des experts — des erreurs commises par les classi-
fieurs. Les cartes de recouvrement, que nous avons congues, viennent alors en soutien (voir la figure 4.5).
Elles symbolisent, le degré de recouvrement des régles pour chacun des pixels de 'image. Les pixels rouges
indiquent les endroits qui ne sont couverts par aucune régle et en dégradé de gris les pixels qui activent
de une (en noir) & plusieurs régles (en blanc). Une bonne carte de recouvrement est totalement noire.
Les pixels rouges indiquent souvent les classes non apprises ou celles qu’il serait judicieux d’inclure dans
I’ensemble d’apprentissage, rendant le processus de classification incrémental. Généralement, deux ou
trois régles se recouvrent dans les cas les plus complexes.

Nombre de regles activée:
par un échantillon :

.

1 2 3 4 5

F1G. 4.5 — Carte de recouvrement pour la zone de Strasbourg.

La validation graphique donne souvent des conclusions intéressantes, mais les protocoles de validation
permettent une automatisation plus pratique du processus de validation. Nous les exposons dans la partie
suivante.
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4.6.2.3 Protocoles de validation

Différents protocoles de validation ont été intégrés au sein d’une plate-forme nommeée VPlat (ang.,
Validation Platform, voir 'annexe F), afin d’obtenir une mesure de qualité plus précise sur I’apprentissage
lui-méme, notamment concernant 1’ expansibilité des algorithmes, critére qui fait partie de la liste définie
dans la section 1.2. Nous avons utilisé les stratégies par holding-out, k-fold cross-validation (validation
croisée & k partitions), bootstrapping et jackknifing. On pourrait les qualifier de méta-apprentissage car
le role de ces stratégies est de lancer différents apprentissages successifs afin de calculer 'erreur de
généralisation en utilisant une mesure de qualité quelconque parmi celles présentées dans cette section,
et car elles peuvent exhiber plusieurs ensembles de régles de qualité croissante [Hjorth, 1994].

La stratégie de validation croisée & k partitions [Plutowski et al., 1994] relance I’apprentissage k fois
sur le jeu de données complet découpé en k partitions. Plusieurs stratégies sont possibles : en choisissant
a chaque fois 'une des partitions pour les tests et les k — 1 restantes pour I’apprentissage (variante
leave-one-out), ou en regroupant N < k partitions pour les tests et kK — N partitions pour I’apprentissage
(variante leave-N-out). Chaque partition est donc utilisée en validation pour une expérimentation et
en apprentissage pour k — 1 expérimentations. La note finale est la moyenne des notes obtenues pour
chaque expérimentation. Ces notes sont souvent calculées en utilisant Qyccurr, mais I'index de k est aussi
recommandé. La stratégie du holding-out est une validation croisée dégénérée & deux partitions de tailles
différentes.

Le bootstrapping [Shao et Tu, 1995] est une autre stratégie populaire dans laquelle les échantillons
d’apprentissage et de validation sont sélectionnés aléatoirement. Ensuite, le fonctionnement est le méme
que pour la stratégie dite holding-out. Le principal intérét est le fait que l'on peut lancer des cycles
d’apprentissage en nombre illimité, tant que 'on espére réduire I'intervalle de confiance des mesures de
qualité jusqu’a la taille désirée. On peut alors extraire un jeu de régles performant. Une variante consiste
a préparer k jeux d’apprentissage composés pour chacun d’une proportion d’échantillons tirés au hasard
dans le jeu de données, et complétés par des échantillons créés de maniére totalement aléatoire. Les jeux
de test correspondants sont constitués uniquement d’exemples (réels) qui n’ont pas été appris. L’intérét
est de tester la robustesse de 'algorithme ainsi que sa capacité de généralisation. Le nombre de jeux, leur
taille et la proportion d’exemples aléatoires ne sont pas limitées par le nombre de données, ce qui est trés
utile, par exemple, lorsque le nombre de validations terrain est faible.

Enfin, une stratégie moins connue, le jackknifing, est quasi-similaire au bootstrapping ou a la variante
leave-one-out de la validation croisée [Shao et Tu, 1995]. Il s’agit de tirer aléatoirement un échantillon
pour la validation, d’apprendre sur le reste et de recommencer autant d’apprentissages que désiré. Des
variantes existent en tirant plusieurs échantillons sans remise (les jeux de données étant alors susceptibles
de contenir plusieurs fois le méme échantillon), ou en tirant les échantillons pour ’ensemble d’appren-
tissage plutot que pour la validation. Cependant, le bootstrapping est utilisé pour calculer 'erreur de
généralisation, alors que le jackknifing est utilisé pour mesurer le biais d’une mesure : des mesures d’in-
térét Mj sont calculées sur chaque sous-ensemble d’échantillons puis elles sont comparées a la mesure M
obtenue pour le jeu complet, afin d’estimer son biais.

Une autre stratégie par méta-apprentissage existe, qui teste I'influence d’un paramétre de I’appren-
tissage plutot que I’échantillonnage des exemples. 11 s’agit des courbes ROC. Nous les décrivons dans la
partie suivante.

4.6.2.4 Courbes ROC

La courbe ROC (ang., Receiver Operating Characteristic) est une mesure statistique congue dans les
années 1950 pour donner une vue multi-niveaux d’un test [Metz, 1978; Long et al., 1988]. Le test ne peut
concerner qu’une seule classe (et sa non-classe). Il tient compte de 1 — Q4pe (en abscisse) et de Qsens (en
ordonnée). La courbe est associée & un parameétre p : un nouveau pool de régles I'), = ®(I'g, p) est généré
depuis un pool initial Ty (correspondant & un pool de référence appris avec le jeu d’apprentissage), puis
est appliqué sur le jeu de test. La fonction de génération ® ainsi que le paramétre p doivent étre choisis
de telle sorte que pour p = 0, le test ne donne que des réponses négatives (Qsens = 1 — Qspe = 0) et
que pour p = 1, le test ne donne que des réponses positives (Qsens = 1 — Qspe = 1). Plusieurs courbes



4.7. CONCLUSION 75

peuvent étre comparées en utilisant des parameétres différents. D’autres mesures y sont souvent associées,
comme ’aire sous la courbe (qui doit étre la plus grande possible) ou la distance ACy (qui doit étre la
plus courte possible, voir la figure 4.6). AC,; mesure la distance entre le point singulier de la courbe ROC
et le point (0, 1) est considéré comme le classifieur parfait. Elle est calculée par :

ACqy=1~— \/p' (1 - Qsens)2 + (1 -p)- (1 - Qspe)2 (4.28)
Qsens

Trop de faux positifs
(ang., false alarm)

Trop de faux négatifs
(ang., missed hits)

>
1—Qspe

FiG. 4.6 — Exemple schématique d’une courbe ROC et d’une mesure associée.

Sur la figure 4.6, le test C renvoie moins de faux positifs et de faux négatifs pour un paramétre
restrictif (p — 0), il est donc intéressant pour le diagnostic (le résultat est meilleur si le test est ciblé
pour un échantillon donné). A I’inverse, le test Cy renvoie moins de faux positifs et de faux négatifs pour
un paramétre plus large (p — 1), ce qui est intéressant pour le dépistage (et permet un brassage plus
large des cas, le test étant meilleur en cas de sensibilité accrue par ’augmentation du paramétre). A titre
d’exemple, dans nos études de cas, nous avons fait correspondre p & un coefficient de variation de la taille
du domaine de définition du classifieur, par exemple la surface des différents intervalles, car c’est un point
commun & beaucoup de représentations que nous avons choisies.

4.7 Conclusion

Nous avons présenté les notions concernant les différents problémes de classification & résoudre (hard,
soft, flous ou & intervalles flous), notions importantes pour la suite de cette thése. L’existence de ces
différents types fagonne le formalisme des régles, a la fois au niveau de la représentation de leurs conditions,
et au niveau de la représentation de la prise de décision pour la classification. Des solutions pour les
classifications de type hard, soft ou floues sont déja connues en télédétection, mais nous proposons,
dans le chapitre suivant, un nouveau type d’algorithme pour les classifications & intervalles flous. A
cette intention, nous avons présenté une représentation de régle générique ainsi qu'une terminologie qui
nous servira de cadre de travail par la suite. Nous avons aussi défini 'algorithme général du processus
de découverte des régles. De plus amples détails concernant le fonctionnement général des opérateurs

génétiques peuvent étre trouvés dans ’annexe C, ainsi que dans nos publications [Quirin, 2002; Korczak
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et Quirin, 2003a; Korczak et Quirin, 2003c; Quirin et al., 2004]. Méme si les algorithmes évolutionnaires
sont, connus pour s’exécuter dans un temps plutdt long, nous avons dégagé une liste de facteurs pouvant
atténuer la complexité algorithmique de notre systéme. Notamment, certains parameétres au niveau des
opérateurs génétiques ou de l’algorithme lui-méme peuvent intervenir favorablement. Enfin, la derniére
section a été réservée & la présentation des différentes mesures de qualité et protocoles de validation qui
sont utilisés au sein des divers algorithmes présentés dans le chapitre suivant, mais qui ne pourront pas
étre développés pour chacun d’eux. Nous avons présenté ou proposé des techniques utilisables durant
I’apprentissage, en test ou en validation et adaptées soit au domaine d’étude, soit & la représentation des
régles afin de tester leur qualité ou servir comme base de comparaison. Nous avons maintenant les bases
théoriques nécessaires pour aborder la description précise des algorithmes d’apprentissage.



Chapitre 5

Algorithmes de classification

5.1 Introduction

Au fil de I’étude des différentes qualités et faiblesses que nous avons rencontrées avec les diverses
représentations, nous avons préféré développer plusieurs approches distinctes car nous n’en avons trouvé
aucune qui disposait d’un potentiel suffisamment étendu pour s’aligner sur tous nos critéres. A partir
de I’étude des représentations, nous allons voir que chacune d’elles s’adresse & un type de probléme
différent. Nous étudierons donc les opérateurs génétiques et les diverses fonctions d’évaluation qui leur
sont associées. Afin de présenter a 'utilisateur un modéle unique et par conséquent cohérent, la totalité
des algorithmes dont nous allons parler a été centralisée sous une plate-forme unique, nommée VPlat
(voir annexe F) qui répond & trois objectifs : (1) abstraire le format des données d’entrée (images,
textes, bases de données, ...) et de sortie (classifications), (2) abstraire le paramétrage et le lancement des
différentes méthodes d’apprentissage et (3) en profiter pour proposer des modéles de validation génériques
manipulant finalement des données et des méthodes d’apprentissage abstraites (par exemple la validation
croisée est un tel modeéle). Puisque trés technique, nous ne détaillerons pas ici le fonctionnement exact
de cette plate-forme.

Afin d’apporter une réponse variée aux problémes de classification d’images, c’est-a-dire aux pro-
blémes hard, soft, flous ou par intervalles flous, nous avons développé quatre types de méthodes de
classification différentes que nous exposerons dans les deux sections principales de ce chapitre. Dans
chaque partie, deux algorithmes différents seront présentés. La premiére partie (section 5.2) détaille le
fonctionnement des algorithmes adaptés aux problémes que nous qualifierons de classiques et que nous
prendrons comme référence dans la suite. Ces algorithmes sont adaptés au traitement de problémes de
type hard ou soft. Les algorithmes ICU et XCS-R, les représentations qu’ils mettent en ceuvre, ainsi
que les opérateurs correspondants seront détaillés. Il s’agit d’algorithmes permettant d’obtenir des régles
de classification performantes, mais nombreuses dans le cas de XCS-R. Enfin, dans la seconde partie
(section 5.3), nous adapterons les algorithmes précédents au probléme de la classification floue. Nous
parlerons notamment de ICUX, une extension de ICU et de GramGen, un algorithme & base de pro-
grammation génétique. Pour le lecteur non initié aux algorithmes évolutionnaires, nous avons décrit les
principales notions les concernant dans 'annexe C.

5.2 Meéthodes d’apprentissage adaptées a la classification soft

5.2.1 L’algorithme ICU
5.2.1.1 Représentation des régles

ICU (I See You) est un algorithme permettant de faire de la classification soft. Nous présentons dans
cette partie et les parties suivantes la représentation des régles ainsi que certaines fonctions génétiques.

7
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Le lecteur intéressé pourra se référer a [Quirin, 2002] et a [Korczak et Quirin, 2003b] pour d’autres
informations.

Les régles manipulées par ICU se veulent simples et expressives, mais permettant tout de méme
d’aborder une certaine complexité dans les données, par exemple de celles évoqués sur la figure 3.9
(page 50), & propos des aspects multiples que peut revétir un spectre de la méme classe. ICU associe
a un échantillon caractérisé par un vecteur spectral (ensemble des valeurs de radiance de cet échantillon
pour chaque bande) 'instance de la classe thématique correspondante. Chaque régle est indépendante
des autres et ne traite qu’une seule classe & la fois (les exemples des autres classes sont a chaque fois
considérés comme des contre-exemples par I’algorithme d’apprentissage) et représente un seul individu
génétique. La structure de données capable de mémoriser une telle association est décrite ci-dessous.

En classification soft, la partie <action> des régles indique la classe sous la forme d’un attribut
nominatif. Concernant la partie <condition>, aprés plusieurs essais de structures légérement différentes,
nous avons décidé qu’elle reposerait sur la notion d’intervalle spectral. Un tel intervalle est un couple de
nombres entiers, entre 0 et la valeur maximale possible pour un échantillon et pour une bande donnée
(255 pour les échantillons définis sur 8 bits, 65536 pour les échantillons définis sur 16 bits, etc), qui
permet, de découper ’espace des valeurs spectrales en deux espaces : celui des valeurs souhaitées pour les
échantillons d’une méme classe, et le reste.

Pour généraliser ce concept et mieux cibler les classes, nous affectons & chaque bande disponible
dans 'image brute un ensemble d’intervalles éventuellement disjoint. La forme définitive de la partie
<condition> d’une régle est la suivante :

<condition> = E{NEx; NE3sN...\E, (5.1)

oll n est le nombre total de bandes et E; sont des ensembles d’intervalles.
Les ensembles d’intervalles F; sont définis pour toutes les bandes présentes dans les données brutes.
Chaque ensemble défini un ou plusieurs intervalles spectraux de la forme suivante :

Ei = [m“,M“] V [mm,Mm] V [ngyM’Lg,] V...V [mip;Mi ] (52)

ott [m;;; My,] est un intervalle spectral et 4, leur nombre, qui dépend du numéro de bande i. m;; et
M;; sont respectivement les radiances minimale et maximale autorisées d’un échantillon pour la bande i,
pour que celui-ci active la régle (dans ce cas, my; <b; < Mlj)

Les intervalles [m;;; M;,] ne sont pas forcément disjoints : par expérimentation, nous nous sommes
rendu compte que le fait de garder des intervalles non disjoints (au lieu de les fusionner puisque mathé-
matiquement cela revenait au méme) permettait a l’algorithme de mieux fonctionner. La fusion tend a
diminuer significativement le nombre d’intervalles, et les régles n’ont pas une diversité suffisante pour
pouvoir s’améliorer. Voici un exemple de fusion pour clarifier les choses :

E = [11;105] V [138;209] V [93; 208] = E = [11;209]

Enfin, le nombre d’intervalles spectraux i, dans un ensemble est autorisé & varier pour chaque
ensemble F; et pour chaque classe en fonction du nombre de sous-conditions nécessaires & 1’algorithme
pour rendre la régle fiable. i, est cependant inférieur & une limite fixée par I'utilisateur (par défaut 5) et
doit étre non nul (0 < 4, < 5).

Pour satisfaire la régle, un échantillon, défini a fortiori sur toutes les bandes de 'image, doit donc
satisfaire chacun des ensembles d’intervalles spectraux de chaque bande. Pour satisfaire un ensemble
d’intervalles spectraux, il doit satisfaire seulement 'un des intervalles de cet ensemble. Les régles défi-
nissent donc des conjonctions de disjonctions d’intervalles.

Cette représentation a surtout été choisie parce qu’elle apporte de la simplicité dans les résultats
présentés & l'utilisateur et par le fait que I’expression de contraintes multiples reste tout de méme com-
pacte [Quirin, 2002]. De plus, la notion d’ensemble d’intervalles est capable de saisir I’hétérogénéité des
échantillons qui appartiendraient & la méme classe. Ces régles permettent enfin une rapidité d’évaluation
qui peut étre importante dans certains domaines d’application (flux d’images videéo, ...).
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Fi1G. 5.1 — Correspondance entre une régle et un spectre donné.

La figure 5.1 indique dans quelle mesure une régle peut caractériser le spectre d’un échantillon donné.
Les intervalles de la régle sont simplement testés les uns aprés les autres, jusqu’a ce que I'un d’entre eux
ne correspondent plus aux valeurs de radiance de I’échantillon. Chaque intervalle est donc une contrainte
sur le spectre : la régle compléte forme une conjonction de disjonctions de contraintes.

5.2.1.2 Fonction d’évaluation

La fonction d’évaluation associe une note & chacune des régles de la population courante (voir ’an-
nexe C). Son principe est simple. Elle tient compte de quatre quantités, présentées dans le tableau 5.2,
en fonction du fait que la partie <condition> de la régle soit activée ou non par un échantillon brut et
que la classe prédite par la régle correspond ou non a celle déterminée par 'expert.

Quantité d’échantillons bruts

... activant R | n’activant pas R
: Te Teg
La classe correspond | Oui Py Py
<1 reg reg
a l'expert £ Non P P

F1a. 5.2 — Caractéristiques de la fonction d’évaluation pour ICU.

Une premiére note, appelée N .55, concernant les échantillons classés au vu de ’expert dans la classe
courante, est déterminée en fonction du nombre d’échantillons que la régle a su classifier correctement.
Elle représente le pourcentage des échantillons classifiés dans la classe X par la régle par rapport & tous
les échantillons étiquetés dans X par 'expert :

preg
Nclass =—" (53)

PLif + Py
Une deuxieme note, appelée No—, concernant les échantillons classés au vu de I'expert comme
n’appartenant pas a la classe courante, est déterminée en fonction du nombre d’échantillons que la régle
n’a pas affectés non plus dans la classe courante. Elle représente le pourcentage d’échantillons écartés de
la classe X par la régle par rapport a tous les échantillons non étiquetés dans X par ’expert :

Teg
T o €eTp
‘]\Vclass - PW+ Preg (54)
eTp eTp

Nous souhaitions résoudre le probléme des classes sous-représentées : si une classe contient peu
d’échantillons qui lui sont représentatifs, la note ne doit pas défavoriser cette classe. Par exemple, un
probléme contenant 500 échantillons d’une classe C; et 10 échantillons d’une classe Cs, risque de produire
une régle du type : si vrai alors C;. Cette régle obtiendrait alors une note quasi-optimale (correcte dans
98% des cas), mais elle aurait un faible pouvoir de généralisation. Prendre la moyenne des deux notes (5.3)
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et (5.4) permet de résoudre parfaitement le probléme des classes sous-représentées (et sur-représentées
car la difficulté est symétrique). En effet, la note subira un sérieux déficit si la régle s’active alors qu’elle
ne le devrait pas (dans ’exemple ci-dessus, la note obtenue serait égale a 0.5).

Néanmoins, il est peut étre du désir de I'expert de vouloir pénaliser les classes représentées de
maniére extréme. Par exemple, des classes faiblement représentées que I’expert souhaiterait requalifier en
examinant si les échantillons correspondants n’appartiendraient finalement pas & une autre classe. Il peut
ainsi jouer avec une classe de type “inconnue” en laissant & I'algorithme la possibilité (si c’est pertinent)
de reclasser les échantillons ailleurs, ou de les laisser en place. Bien que ce besoin soit assez rare, nous
avons mis en place un coefficient de reclassement Cgqss, pour aboutir & la forme finale de la note :

1
Nﬁnal = Cclaschlass + N

class
Cclass

(5.5)

En situation réelle, ces coefficients n’ont pas réellement d’intérét et nous conseillons de leur donner
la valeur 0.5, car cette valeur permet d’obtenir une qualité convenable lorsque 1’on ne dispose pas de
connaissances préalables sur la distribution de chaque classe.

La fonction fitness F; mesure I’adaptation ou la performance d’un individu ¢ par rapport aux autres.
Elle est calculée a partir de la fonction d’évaluation f; :

F = (5.6)

5.2.1.3 Création d’un individu initial

Nous avons proposé deux approches pour créer l'individu Iy, selon deux méthodes différentes : la
méthode GenMinMaz et la méthode GenSpectro, que nous décrivons ci-dessous. La premiére présente
I’avantage d’étre rapide, la seconde permet de traiter certains cas plus complexes.

La méthode GenMinMax. Elle consiste & comparer les données brutes avec ’expert. Elle définit,
pour chaque échantillon appartenant & la classe demandée et pour chaque bande spectrale disponible, la
valeur de radiance minimale et maximale observée sur les données brutes. Ensuite, elle duplique chaque
intervalle un certain nombre de fois, spécifié par I'utilisateur afin de créer ’ensemble d’intervalles spectraux
(Eiy, V...V E;,). On obtient ainsi une regle de classification grossiére, classant correctement tous les
échantillons de la classe en question (puisque chaque échantillon sera forcément dans la plage encadrée
par les bornes minimale et maximale). Bien entendu, des régles issues de plusieurs classes différentes se
recouvriront. De plus, la méthode ne fonctionne pas correctement si pour la méme classe, 'image contient
des valeurs de radiance extrémes. Cependant, pour des images de type SPOT (faible nombre de bandes
et petit domaine de définition des valeurs de radiance) cette méthode simpliste convient parfaitement :
en effet les échantillons appartenant & la méme classe ont rarement des valeurs éloignées de la moyenne
observée pour toute la classe, les écarts-types étant souvent trés faibles.
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F1G. 5.3 — Méthode d’initialisation GenSpectro (ICU).
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La méthode GenSpectro. Cette méthode beaucoup plus complexe est a réserver aux images pré-
sentant des domaines de définition plus vastes pour les valeurs de radiance. Le nombre de bandes n’est pas
un facteur d’explosion combinatoire puisque chacune d’elle est analysée de maniére indépendante comme
dans la premiére méthode. Cependant, nous avons cherché a résoudre le probléme des valeurs des échan-
tillons extrémes (ang., outliers), et & insuffler une premiére idée de discrimination & notre algorithme. Le
principe consiste & découvrir pour une bande donnée, la répartition des valeurs des échantillons afin de
créer autant d’intervalles que nécessaire pour décrire ces valeurs (toujours sous la forme d’une conjonc-
tion). La méthode repose sur la création d’un spectrogramme! & partir des données brutes et des données
expertes. Grace & ces vecteurs de probabilités, le programme détermine des paquets de méme densité
caractérisant le spectre des échantillons de cette classe. Le nombre de paquets maximal est déterminé par
I'utilisateur et équivaut au nombre de disjonctions qu’il souhaite obtenir dans le pire des cas. La figure 5.3
présente la répartition des valeurs d’un échantillon dans une classe et une bande arbitraire, et la création
de la régle originale, selon la méthode GenSpectro.

Dans le cas de données & valeurs extrémes, autant d’intervalles sont créés pour les contenir, quelles
que soient leurs positions dans ’espace des données. Cette méthode est indépendante de 1’échelle et de
Iirrégularité des données.

5.2.1.4 Opérateur de croisement

Il consiste & sélectionner, dans deux régles, un ensemble d’intervalles E; correspondant a la méme
bande spectrale, de telle sorte que 'opérateur puisse étre déclaré cohérent, puis & les échanger. La va-
lidation (vérification des bornes) peut se poursuivre ou non par une fusion (au choix de l'utilisateur),
consistant a fusionner les intervalles au sens mathématique du terme. Nous montrons sur la figure 5.4
le résultat du croisement de deux individus contenant chacun un seul ensemble d’intervalles & échanger.
Nous avons choisi d’appliquer, dans ICU, un croisement uniforme car nous en avons obtenu les meilleurs
résultats.

Aprés le croisement Aprés la fusion
[10;13] O [24;36] O [55:67] - [10;13] 0 [48;53] L1 [55:67] - [10;13] 0 [48553 0 [55,67)
[7271 04853 O [81:93] [7:271 0[24;36] O [81:93] [7:36] 0[8193

f $

Fia. 5.4 — Illustration de 'opérateur de croisement et de la fusion (ICU).

Cependant, la fusion produit & long terme une diminution du nombre d’intervalles dans les régles
(simplification implicite engendrée par 'opérateur de croisement), ainsi qu’une perte d’information : en
effet, il est parfois important pour la génération suivante, de conserver deux intervalles distincts. Par
exemple, supposons que la valeur 23 ne doive pas activer la régle, car elle est caractéristique d’une autre
classe. Si nous partons de la régle obtenue aprés croisement (régle inférieure au centre de la figure 5.4), une
mutation a la génération suivante peut modifier la borne 27 en 22, ce qui augmente la fitness de la régle
(on obtiendra [7;22] V [24;36] V [81;93]). Par contre, si nous partons de la régle obtenue apreés fusion, les
modifications nécessaires pour parvenir a supprimer la valeur 23 de la régle sont beaucoup plus lourdes, et
celle-ci sera éliminée prématurément bien avant. De plus, il est intéressant de constater que 'effet positif
ou négatif d’un intervalle sur la qualité globale de la régle peut étre lié & d’autres intervalles présents dans
la méme regle. Lorsque ’on échange de tels intervalles, il est possible que la qualité de la régle baisse, ce
qui permet de détecter cette collusion, alors que I’opération de fusion accentue la dissimulation de cette

ISorte d’histogramme indiquant, pour une classe donnée, la probabilité qu’a la valeur d’un échantillon de cette classe
de passer par un point donné du spectre. Les spectrogrammes apportent aussi une qualité de validation visuelle et seront
décrits dans le chapitre 7.
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dépendance. C’est pourquoi la correction par fusion est une opération que nous déconseillons par défaut,
les expérimentations ayant montré une perte de performance [Quirin, 2002].

5.2.1.5 Opérateur de mutation

La mutation permet d’explorer ’espace de recherche. Les régles sont en fait un ensemble relativement
important de variables, surtout lorsque ’on traite des images hyperspectrales. Nous avons donc choisi
d’appliquer ’opérateur de mutation, avec une certaine probabilité Pp,,;¢, a plusieurs niveaux, c’est-a-dire
que ’on va & la fois agir sur une bande compléte, sur un intervalle et/ou sur une borne. Nous montrons,
dans la figure 5.5, les différents niveauz d’opérations que nous proposons, représentées sous la forme d’un
arbre.

| Mutation |
/ v\
| Bande | | Intervalle | | Bornes |

| AjoTI | Découpage | | Suppression|

A
Suppression | | Déplacement| |Modification [A;B]

AouB AetB

Fia. 5.5 — Opérateur de mutation (ICU).

La mutation ne concerne qu'un et un seul objet de la régle a la fois : soit ’on s’intéresse a la
modification d’une bande compléte, soit & un intervalle donné dans une bande bien précise, soit a la
modification d’une ou deux bornes dans un intervalle bien précis. Ceci permet & la fonction d’évaluation
de tester les modifications les unes aprés les autres et de privilégier le type de modification et D'effet
correspondant au cas par cas. Le découpage en niveaux (bande, intervalle, bornes) est justifié par les
remarques suivantes :

— La mutation de bande consiste & supprimer dans la régle les contraintes liées & certaines bandes
sélectionnées. Son intérét peut étre résumé en deux points essentiels : tout d’abord ce type de
mutation permet la généralisation et la simplification des régles. Ensuite, 'opérateur permet d’éli-
miner les bandes bruitées, ainsi que toute bande non bruitée et non porteuse d’une information
discriminante pour la classe. L’utilisateur a le moyen de connaitre la liste des bandes qui ont été
éliminées en observant la taille des intervalles de la base de régles finale produite par ’algorithme,
ce qui lui permet d’avoir une idée plus précise sur les bandes caractéristiques d’une classe.

— La mutation d’intervalle permet d’ajouter, supprimer ou découper un intervalle en deux. En cas
d’ajout, la nouvelle régle est alors complétée par un intervalle centré de maniére aléatoire, et dont
la largeur est prise aléatoirement autour d’un seuil paramétré par 1’utilisateur, en pourcentage de
la valeur maximale possible. La suppression est, elle aussi, aléatoire. Le découpage d’un intervalle
se fait & partir d’un point aléatoire (par exemple, le découpage de [10;100] peut donner [10;13] et
[15;100]). Un découpage suivi d’une suppression permet de réduire le tube spectral pour lequel les
valeurs spectrales des pixels sont discriminantes.
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— La modification ponctuelle aléatoire d’une ou de deux bornes d’un intervalle est possible, ainsi
qu’une opération de glissement (ang., shift) aléatoire de 'intervalle. L’amplitude est paramétrable
par l'utilisateur et se calcule par rapport & la valeur des bornes avant la mutation.

L’utilisateur a le moyen de paramétrer la probabilité de déclenchement des différentes branches de
la figure 5.5 : les paramétres Pmut,band’ Pmut,interval et Pmut,border interviennent respectivement sur
la mutation de bande, d’intervalle et de bornes. Il peut donc agir directement sur la complexité des régles
produites par le programme. Méme si ces paramétres peuvent sembler nombreux, il faut garder a 'esprit
qu’ils ne sont pas essentiels : qu’une régle soit simple ou complexe, I’algorithme ne conserve de toute fagon
que la meilleure. Enfin, les régles produites ne sont pas forcément viables (exemple : [53;12]), surtout
apreés avoir réalisé de nombreuses mutations en chaine. Elles sont donc systématiquement soumises & une
procédure de validation visant & rétablir leur cohérence (inversion des bornes, fusion, seuillage lors d’un
dépassement de capacité, ...).

5.2.2 L’algorithme XCS-R
5.2.2.1 Description de XCS-R

Nous avons développé un autre algorithme, XCS-R,, qui permet lui aussi de faire de la classification
soft. L’architecture de ce systéme est plus complexe que celle I’ICU. Le fonctionnement général de
Palgorithme est basé sur le modéle du systéme de classifieurs & valeurs continues proposé par [Wilson,
2000a] et sa description algorithmique [Butz et Wilson, 2002]. Cette partie présente ’architecture générale
du systéme (figure 5.6), son fonctionnement ainsi que les améliorations que nous avons apportées par
rapport au modéle de Wilson. D’autres détails sont décrits dans nos publications [Quirin et al., 2004;
Quirin et Korczak, 2005a; Quirin et al., 2005].

XCS-R fait évoluer par algorithme génétique un ensemble de régles, appelées dans la terminologie du
chapitre 2 « population de classifieurs » (ou population set). Contrairement aux systémes de classifieurs
originaux (LCS), la fonction d’évaluation, introduite par [Wilson, 1995], est basée sur I’exactitude de la
prédiction de la récompense, plutdt que sur la prédiction de la récompense elle-méme. Ainsi, non seulement
XCS-R a été congu pour permettre ’évolution de régles de classification qui maximisent la réponse
de l'environnement, mais il détermine aussi une représentation compléte du probléme (ang., complete
mapping), c’est-a-dire que l’algorithme apprend la récompense qu’il va percevoir pour chaque combinaison
possible de parties <condition> et de parties <action>. Comme dans notre cas, les échantillons sont
composés de valeurs réelles qui peuvent étre trés grandes, nous avons adapté le modéle original de Wilson
au probléme de la classification d’images. Nous avons choisi une représentation par séquences d’intervalles
de valeurs continues et adapté certains parameétres pour tenir compte de ’amplitude trés large des données.
La réponse de ’environnement est calculée par une fonction d’évaluation des régles identique a celle vue
pour ICU. D’autre part, la sélection des régles fait ’objet d’une attention particuliére et sera détaillée
dans la section 5.2.2.3.

Un classifieur se compose de cing composants principaux :

1. La partie <condition> spécifie une conjonction d’intervalles, un intervalle pour chaque attribut de
I’échantillon d’entrée.
2. La partie <action> spécifie la classe C' correspondant & 1’échantillon.

3. La prédiction de récompense p estime la moyenne des récompenses que le systéme va percevoir
aprés avoir déclaré que 1’échantillon activant la régle est de la classe C.

4. L’erreur de prédiction e est basée sur I'écart-type des prédictions par rapport aux récompenses
constatées.

5. La fitness F refléte la performance relative moyenne mesurée du classificateur par rapport a d’autres
classifieurs qui s’activeraient avec la méme condition.

L’apprentissage commence avec une population vide. Pour un échantillon e donné, tous les classifieurs
de [P] dont les conditions sont activées par e forment le Match Set [M] (voir la figure 5.6). Si les valeurs
de certaines actions ne sont pas représentées dans [M], un opérateur spécial, le Covering Operator, est
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Echantillon brut Environment Echantillon expert

Valeurs du pixel :r__[_é__(jj__:j:]__i Données : images, etc. Classe I'::(::é:l |
_ Covering
i
Activation
[P] Population Set
régle p € E [M] Match Set
# #[013;7] :C, 43 .01 99 régle D e F
[23]58]# # :C, 32 13 9 #1000 : C, 43 01 99 I
#[35]# # :C4 14 05 52 HJ## : Cy 14 05 52 C, Gratification
[0;1][3;5][2;5# :C, 27 24 3 [00#: c, 27 24 3
#[L5]#[1,7 :C, 18 .02 92 ##] : Cy 18 02 92
[2;3]#[2;3][2;3] : C3 24 17 15
p: prédiction de récompense
€ erreur de prédiction — Alonti
L [PA] Prediction Array || Sélection de :
F: fitness action __prédiction(p.F) I'action _ [A] Action Set
c O regle p_¢ F
czl 125 #073:C, 43 .01 99
Cs 0 207#:C, 27 .24 3
Cy 16.6
discount @
Récompense
Mise a jour des [A]., Action Set précédente Algorithme
« Prédictions regle p ¢ F Génétique
« Erreurs #O##:C, 14 .05 52 q
« Fitness #0#3:C, 18 .02 92|

F1G. 5.6 — Architecture du systéme XCS-R.

appelé. Celui-ci crée un classifieur qui est activé par e et qui spécifie I'une des valeurs manquantes. Pour un
Match Set donné, XCS-R construit une prediction array [PA] en estimant la récompense de chaque action
possible. Basiquement, [PA] est construite & partir de la moyenne, pondérée par la fitness, des valeurs de
toutes les prédictions de récompense des classifieurs de [M], pour chaque action possible. Durant la phase
d’apprentissage, XCS-R choisit une action en utilisant la sélection par la roue de roulette (approche
historique, [Holland, 1975; Butz et Wilson, 2002]) ou la sélection par tournoi (approche moderne, [Butz
et al., 2003]). Durant la phase d’exploitation, l’action a,q, ayant la plus grande valeur de prédiction
P(a@maz) est choisie.

5.2.2.2 Principe de 'apprentissage par renforcement

XCS-R met & jour la population de régles aprés chaque instance d’échantillon qui parcourt le
systéme. Lorsque I’action choisie est comparée a I’échantillon expert, une gratification ou pénalisation est
percue et les paramétres de tous les classifieurs de 1’Action Set courant [A] (tous les classifieurs de [M]
qui spécifient ’action finalement choisie par XCS-R) sont mis & jour en conséquence.

Le Covering Operator s’assure que toutes les valeurs pour les actions susceptibles d’étre déclenchées
par un échantillon donné sont représentées par au moins un classifieur. Lors de son appel, chaque at-
tribut du nouveau classifieur créé est initialisé en utilisant un parameétre nommeé cover-rand qui spécifie
Iintervalle maximal autorisé pour un attribut donné.
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Ensuite, 'AG est appelé réguliérement, en fonction d’une probabilité de déclenchement 0 4, consis-
tant & croiser ou & muter des classifieurs de [P], puis un nouveau cycle débute. Lors de I'insertion d’un
classifieur enfant (ang., offspring) dans la population [P], les classifieurs existants lui sont comparés. Si un
classifieur plus général est trouvé, c’est-a-dire qui englobe? I’enfant, ce dernier est écarté et la numerosity
(ang.) du classifieur général est augmenté. Le paramétre de numérosité® indique que le classifieur est
présent virtuellement plusieurs fois dans la population (il est nommé macro-classifieur) et ne sert qu’a
réduire ’'occupation mémoire pour le traitement de grands jeux de données.

5.2.2.3 Sélection des régles

Comme dans ICU, le méme échantillon peut activer plusieurs régles qui peuvent spécifier des classes
différentes. En classification soft, ce comportement est attendu. En classification hard, nous utilisons

directement les paramétres des classifieurs pour faire un choix unique. Nous avons proposé deux méthodes
(MazConfident et ScoreConfident) dans ce but :

1. Dans la premiére, seules les régles qui ont une valeur de prédiction de récompense élevée sont
éligibles. Le seuil pour cette valeur correspond & la moitié de la gratification maximale que 1’en-
vironnement peut verser. Ensuite, la classe la plus fréquente présente dans ’Action Set [A] est
renvoyée.

2. La seconde est basée sur 'idée que les classifieurs intéressants ont une valeur de prédiction élevée
mais n’ont pas été créés récemment. Un mécanisme existe dans XCS-R. pour donner aux classifieurs
nouveaux-nés une prédiction moyenne mais déja forte, malgré leur inexpérience due a leur jeune
age, afin d’éviter qu’ils ne se fassent éliminer au tour suivant. Nous calculons alors une note qui
tient aussi compte de la fitness. Pour une classe ¢ et un classifieur r donnés, cette note est calculée
de la facon suivante :

S P.xF,
> F

ou P, est la valeur de prédiction de la régle et F). sa fitness. La classe possédant la meilleure note
est renvoyée.

S, = (5.7)

La seconde méthode donne généralement de meilleurs résultats que la premiére, car le fait de tenir
compte de la fitness de maniére progressive par rapport a la capacité de prédiction de récompense des
régles est favorable aux régles performantes qui n’ont pas eu le temps de se développer [Quirin et al., 2005].
Ces deux méthodes ne sont utiles que lors de la phase d’exploitation d’une population de régles apprises
en classification de type hard, ce qui correspond toujours & l'introduction d’un biais défavorable car la
technique d’apprentissage de XCS-R, qui interagit avec un environnement externe et une présentation
des échantillons tour & tour, est plus proche d’un apprentissage de type soft.

5.2.3 Syntheése

La structure des régles d’ICU et de XCS-R est finalement relativement basique :

si <condition> alors <classe>

Elle est néanmoins compacte et reste un bon moyen de capturer la complexité des données tout
en restant lisible. A titre d’illustration, nous donnons un exemple d’une régle produite par ICU pour
classifier les instances d’une classe de végétation marine (le Juncus) :

(435 < By < 1647) A ... A ((365 < Brg < 4023) V (15643 < Bry < 48409)) A... A (668 < Brg <
4413) = [CLASS Juncus]

2Ce terme, n’ayant pas d’équivalents consensuels dans la littérature francaise sur les LCS, correspond a une opération
ensembliste : par exemple, I'intervalle [3;13] englobe [5;7].
311 s’agit d’un simple entier dans les implémentations actuelles.
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ou B; est la valeur de radiance pour la bande ¢ du pixel considéré.

Cette régle de ICU comprend 80 conjonctions dont une disjonction concernant la bande 74 mais
elle reste plutot expressive. Sur le méme exemple, 'algorithme XCS-R nécessite 2300 régles comprenant
80 conjonctions chacune pour atteindre la méme performance. En fait, un grand nombre de ces régles
sont identiques, mais 'algorithme XCS-R nécessite d’étre paramétré a 2300 régles pour des raisons de
convergence. Une comparaison plus détaillée entre la représentation des régles de ICU et de XCS-R est
fournie dans le chapitre 7 ainsi que ’étude de la performance de ces régles. Concernant la taille importante
des bases de régles produites par XCS-R, le chapitre suivant se propose d’étudier des techniques de
simplification. Nous nous intéressons, dans I'immeédiat, & deux représentations adaptées a la classification
floue.

5.3 Meéthodes d’apprentissage adaptées & la classification floue

Outre le probléme de la complexité de la base de régles, I'exploitation d’images satellites & haute
résolution spatiale et spectrale pose un autre probléme : comment arriver a traiter la grande quantité de
données disponibles (voir la section 3.4.1), tout en exploitant les mesures trés précises des thématiciens
experts ? Par exemple, & cause de la faible résolution*, en zone rurale comme urbaine, un méme pixel peut
contenir différentes sortes de végétation souvent en relation symbiotique les unes par rapport aux autres
(mizel). Les pourcentages de composition de certains échantillons sont connus et peuvent étre utilisés
pour détailler le contenu des mizels et passer de la résolution du probléme de la classification hard & celui
de la classification floue (unmizing). L’estimation de la proportion relative des différents constituants des
types de terrain présents dans chaque pixel permettrait d’obtenir des modéles de mizels plus précis.

Dans cette section, nous présentons deux de nos algorithmes adaptés aux problémes de classification
de type floue. Le premier, ICUX [Quirin et Korczak, 2005b], est une extension de ’algorithme ICU,
présenté dans la section 5.2.1, et permet de produire des régles plates, mais permettant d’intégrer une
expertise de type classification par intervalles flous, ce qui permet & I’expert de définir des intervalles
de confiance pour les pourcentages de composition des spectres des classes. Le second, GramGen, est
un algorithme & base de programmation génétique guidée par une grammaire, avec un ensemble d’opé-
rateurs suffisamment vaste pour autoriser une grande souplesse a ’expert lors de la formalisation de
ses expressions. Un troisiéme algorithme a été développé, ProgGen, qui posséde les mémes caractéris-
tiques que GramGen, sauf pour la construction des individus génétiques, qui fait appel & des contraintes
par probabilités plutdt que par grammaire. Comme cet algorithme est trés proche de GramGen nous
ne le présenterons pas dans une section isolée, mais nous montrerons leurs différences lorsque cela sera
pertinent.

5.3.1 L’algorithme ICUX
5.3.1.1 Introduction

La recherche d’une solution au probléme de I’unmizing passe par la définition puis ’adaptation au
probléme posé d’un classifieur génétique prenant comme paramétre les valeurs de radiance d’un pixel
(échantillon brut), et renvoyant en sortie, pour chacune des classes apprises a priori, la proportion de ces
classes dans cet échantillon. La représentation choisie pour ce classifieur permet d’encoder, sous la forme
de contraintes, la plage de valeurs admissibles du spectre pour chacune des classes. Ces contraintes sont
en fait des conjonctions de disjonctions d’intervalles, soit des hyper-rectangles dans ’espace des données.
Cette représentation permettrait & la connaissance apprise d’étre facilement représentable a des fins de
présentation et de validation & un expert humain. La présence de disjonctions dans les contraintes permet
de résoudre des problémes non linéaires. Enfin, ces régles sont évaluables directement sur les données,
sans nécessiter de pré-traitements préalables de ’ensemble de 'image, elles sont donc rapides pour classer
de nouvelles images.

4En fait, le probléme se pose aussi avec une résolution élevée, car des petits éléments perturbants peuvent apparaitre
(buissons, voitures, piétons, ...).
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5.3.1.2 Représentation d’un classifieur

Contrairement & ICU, un classifieur (individu génétique) est composé d’autant de régles qu’il y a
de classes & traiter dans les données expertes. La représentation d’ICUX suit donc une approche de
Pittsburgh, plutot que de Michigan (voir la section 2.4). En effet, la classification floue se calculant par
la position de toutes les régles dans l'espace des données, il faut faire évoluer ces régles en paralléle.
L’apprentissage se fait donc en paralléle pour toutes les classes. Chaque régle contient autant de condi-
tions qu’il y a de bandes dans I'image & traiter ou d’attributs exogénes pour chaque échantillon (voir la
figure 5.7).

Condition
R R
C1 CZ t fci’-_‘ C4 2
11 [ ] -
d g Intervalle R 'ls’ Pe (az bl) Af p
alors prop. de la classe K
a
] HEps= dans P est 100%
TT Ry:siPe(dVveVf)Ag
T e 2
LJ alors prop. de la classe Ko
fbﬂ LJ fT dans P est 100%
L] LfJ ......
Classe K; Classe K, Individu

F1G. 5.7 — Figure de gauche : représentation génotypique d’un individu génétique de ICUX (comprenant
plusieurs régles R;). Figure de droite : représentation sémantique associée a I'individu.

Les conditions sont liées entre elles par des conjonctions, par exemple (a V b) A ¢. Chaque condi-
tion porte un nombre variable d’intervalles, dont le domaine de valeur et le type (réel, entier, booléen)
dépendent des données & traiter. Les intervalles sont liés entre eux par des disjonctions. Chaque régle
représente donc une contrainte sous la forme d’un hyper-rectangle pour une classe donnée. Une donnée est
dite en “matching parfait” si 'ensemble des valeurs respectent la conjonction de disjonctions d’intervalles
pour une classe donnée et se trouve hors des intervalles pour les autres classes. Par exemple, s’il y a 5
classes & apprendre, un matching parfait pour la classe 2 pourra étre représenté par une décision du type
{0,1,0,0,0}, comprenant une valeur maximale pour la classe en question et des valeurs minimales pour
les autres classes. Pour permettre aux individus de décrire des concentrations de classes pures diverses
sous forme de pourcentages continus, un calcul de corrélation est effectué lorsqu’une donnée ne respecte
pas les intervalles d’une régle donnée. Le role de 'algorithme évolutionnaire est d’adapter la taille et la
position de ces hyper-rectangles afin qu’ils se conforment au modéle de concentration fixé par 'expert. Les
parties conditions des régles évoluant de maniére indépendantes, il est possible pour l'individu d’affecter
une concentration nulle ou maximale & toutes les classes a la fois (le cas échéant), ou bien de découvrir des
classes qui se recouvrent partiellement ou non dans les données (attributs corrélés). La section suivante
présente les techniques que nous avons utilisées pour quantifier le matching d’une régle et donc d’un
individu pour un pixel donné.

5.3.1.3 Activation d’une régle

La fonction de matching M(R, P) = r est définie pour chacune des régles R composant un individu
et renvoie un réel compris entre 0 et 1 correspondant & la proportion r de classe pure contenue dans le pixel
P =[po,...,Piy.--,pn] (n est le nombre de bandes). L’application d’un individu sur un pixel consiste a
appliquer les différentes régles contenues dans cet individu et a recueillir les différentes proportions pour
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chacune des classes. Pour chaque intervalle I; = [a;;b;] (0 <4 < n) de larégle R, la fonction M(R, P) fait
appel a une fonction M (I;, p;) qui peut étre quelconque, mais qui prend son maximum dans I'intervalle
[ai; b;]. Lors d’une disjonction d’intervalles, la valeur la plus grande de M est retenue.

Match(1,P)

| [ ] | >
- . ‘ » Valeur de bande

2a-b a b 2ba

Fia. 5.8 — Représentation d’une fonction satisfaisante de matching M(I;,p;) pour un intervalle [a;d]
donné.

La fonction qui a été retenue en expérimentation est celle présentée sur la figure 5.8. Elle est définie
de la maniére suivante :

1 si pi € [ai; bl]
ML) = E=2 sip < a (5.8)
pb—i:Zi. sipi > bi

ol p; est la valeur du pixel P pour la bande i et [a;; b;] les valeurs de I'intervalle correspondant défini
dans l'individu génétique. M vaut 1 pour un matching parfait et tend vers 0 sinon.

Cette fonction a la particularité d’étre uniquement dépendante de la taille des intervalles, donc
indépendante de I’échelle des données. L’algorithme évolutionnaire devra adapter la position et la taille
des intervalles directement en fonction du contexte spectral analysé. La fonction est constante dans
lintervalle [a;;b;] pour ne pas influencer la performance des régles si la répartition du spectre n’est pas
homogeéne (hypothése vérifiée).

La fonction de matching pour une régle compléte R tient compte de la note obtenue pour chacune
des bandes et se défini de la maniére suivante :

/D08 ML, pi)©
n
ol n est le nombre de bandes et € est un paramétre positif non nul contrélant I'influence des valeurs
extrémes.
Le matching d’un pixel P avec un individu complet I est défini comme étant le vecteur normalisé
des notes obtenues pour chacune des régles de 'individu. Chaque composante du vecteur indique la
proportion de la classe correspondante dans le pixel P :

M(R,P) = (5.9)

’ > M(Ri, P) T3, M(Ri, P) T, M(R;, P)

Cette fonction sert & quantifier la distance entre les valeurs de I'individu I et du pixel P. Le résultat
obtenu est a la fois utilisé dans la fonction d’évaluation pour noter l'individu et en exploitation, pour
calculer les proportions estimées de chaque classe dans le pixel.

(5.10)

5.3.1.4 Vérification des conditions

Lorsque les régles sont créées ou ont été modifiées (par les opérateurs de croisement ou de mutation),
il est possible que les individus ne soient plus cohérents. Une modification aléatoire de I'une des bornes
d’un intervalle peut conduire :
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— a rendre une borne MIN supérieure & une borne MAX,
— a rendre la valeur d’une borne inférieure ou supérieure a la plage admissible pour les valeurs des
pixels,
— a produire des intervalles auto-intersectant (ex : [25;105] A [80;112] est équivalent & [25;112] et
[12:13] A [14;18] & [12;18]).
ICUX contient une procédure pour vérifier que de tels cas ne se produisent pas, et pour les corriger le
cas échéant par une fusion ou une inversion des bornes. Nous 'appellerons dans la suite procédure de
fusion.

5.3.1.5 Opérateur d’initialisation

La procédure d’initialisation du pool génétique est construite & partir de I'image brute et de l'expertise
(mizels). Un individu initial est créé puis est utilisé pour constituer le pool complet. Notamment, le
nombre de disjonctions d’intervalles pour chacune des bandes et chacune des classes est estimé en tenant
compte & la fois de I'image et de ’expertise.

Soit n le nombre de classes pures et m le nombre de bandes dans 'image, ou d’attributs dans
les données & analyser. A chaque pixel P correspond une expertise ci,...,¢, € R pour chacune des
classes pures K1,..., K,. La valeur de ’expertise ¢; de ce pixel pour une classe pure K; est vue comme la
contribution de la valeur p; de la bande j du pixel P pour cette classe K;. Elle s’exprime par h(p;, j) = cn.
Par exemple, pour un pixel P = [1000; 1500; 1300] et une expertise C' = [0.7;0.1;0.05;0.03; 0.12], nous
considérons que la contribution de la valeur 1000’ pour la premiére bande et la premiére classe est de
70%.

Si on se fixe une classe K;, une bande j et une disjonction d’intervalles DI = [a1;b1] V...V [am; bm],
on peut calculer la contribution moyenne (4,7, DI) apportée par toutes les instances de pixels qui
matchent DI et la contribution moyenne pg (4, j, DI) apportée par toutes les instances de pixels qui ne
matchent pas DI.

L’algorithme se fixe alors un pas de recherche sur 'intervalle [MIN; M AX] des valeurs constatées
des pixels pour une bande donnée, et examine de maniére exhaustive I’ensemble des disjonctions qu’il est
possible de construire. Par exemple, si, pour une bande j, les valeurs des pixels de 'image se répartissent
dans lintervalle [1;1000] et qu’on s’est choisi un pas P, découpant ’espace de recherche en 2 parties
égales, on va examiner successivement les disjonctions ’00’, '01’, ’10’ et ’11°, c’est-a-dire respectivement
les disjonctions : “0” (vide), “[501;1000]”, “[1;500]” et “[1;500] V [501;1000]” (qui se réduit en [1;1000]
aprés lapplication de la procédure de fusion). Pour chacune de ces disjonctions, on calcule la contribution
11 apportée par les valeurs dans ces intervalles et celle (ug) obtenue hors de ces intervalles. L’algorithme
n’a plus qu’a sélectionner la disjonction provoquant ’écart de contribution maximal € = p1 — pg, ce qui
permet de s’assurer que la contribution d’une bande donnée pour une classe donnée est maximale dans
la disjonction et minimale & ’extérieur.

Un individu dit “graine initiale” est construit en accumulant les disjonctions gagnantes pour chacune
des bandes et pour chaque classe, selon la représentation présentée plus haut. Le pool initial est ensuite
obtenu en dupliquant cette graine et en la bruitant légérement autant de fois qu’il y a d’individus dans
la population initiale.

Ces contributions sont dépendantes de la classe et de la bande analysée. La régle finale (pour une
classe donnée) est constituée d’une conjonction de disjonctions obtenues pour chacune des bandes &
analyser. En pratique, pour examiner exhaustivement un espace de recherche découpé en P, = 20 parties
égales (voir la figure 5.9), il faut 220 soit un million d’itérations, ce qui représente un temps de calcul
de moins d’une seconde sur une machine récente. De plus, seul la moitié des itérations est réellement
effectuée, car en inversant pg et p1, on déduit I'importance des disjonctions complémentaires (par exemple,
la disjonction ’10° se substituant alors a la disjonction ’01’). Le nombre maximal d’intervalles d’une
disjonction est borné par le découpage de I’espace de recherche (soit 10 pour 20 parties, car nous fusionnons
les intervalles voisins).

L’une des particularités de notre algorithme est le fait qu’il puisse produire un nombre d’interstices
variables (au sens du nombre d’intervalles dans une disjonction), en tenant compte a la fois des données (de
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Bande | Disjonction 41 1o

b=20 | Xoooo... 1| 0.0677 | 0.0000
b=1 | Xoooo... 1| 0.0619 | 0.0000
b=2 | ) S 1 | 0.0507 | 0.0000
b=23 P X..... 1 | 0.0547 | 0.0000
b—=4 Lo X....1 | 0.0700 | 0.0000
b=5 | x.xx...1 | 0.0868 | 0.0000
b=26 Lo xxx..] | 0.0951 | 0.0000
b=7 Lo xxxx.] | 0.0996 | 0.0000
b=28 | P xxxxx.1 | 0.1650 | 0.0963
b=29 | P xxxxx.1 | 0.0951 | 0.0000
b=10 | r.............. xxxxx.1 | 0.0949 | 0.0000
b=11 | .............. xxxxx.1 | 0.0939 | 0.0000
b=12 | ... ... Xxxxx..7 | 0.0939 | 0.0000
b=13 | [.oiviii . xxx.1 | 0.2200 | 0.0633
b=14 |t x1 | 0.3300 | 0.0382
b=15|r.......... b S 1| 0.3300 | 0.0581
b=16 | [.......... b0 CUI 1| 0.0563 | 0.0100
b=17 | r......... X.Xoooon... 1| 0.0504 | 0.0000
b=18 | [...ce...... ) S 1| 0.0479 | 0.0000
b=19 | r......... ) GO 1| 0.0502 | 0.0000

Fia. 5.9 — Exemple des disjonctions trouvées pour la classe “Spartina” sur une image multispectrale
de 20 bandes. Les “X” représentent les intervalles sélectionnés dans la disjonction. On voit apparaitre
verticalement le spectre de la classe. Notons les interstices spectraux visibles pour les bandes 5 et 17.

toutes les bandes) et des valeurs continues de I’expertise. Cependant, malgré la qualité de Iinitialisation,
I’affinage par l'algorithme évolutionnaire est nécessaire pour plusieurs raisons. Tout d’abord, & cause de
la partialité introduite par la valeur fixée (par l'utilisateur) du pas de recherche. Ensuite, a cause de la
répartition non homogéne des valeurs des attributs au sein de ’espace de recherche.

La partie suivante présente les opérateurs génétiques qui ont été étudiés pour affiner la valeur des
bornes des intervalles en dehors du cadre rigide fixé par le pas de recherche, ainsi que les découper, si la
résolution choisie pour le pas était trop faible.

5.3.1.6 Opérateurs de croisement et de mutation

L’opérateur de croisement. Dans ICUX, le croisement est uniforme. Une classe K est sélectionnée
au hasard, ainsi que les régles R; x et Ry i correspondantes dans les deux individus & croiser. Pour chaque
bande j, la condition Ci i ; de R g, ainsi que la condition Cy g; de Ra g ont une probabilité Peross
d’étre croisées. Lorsque le croisement est sélectionné, un intervalle est choisi aléatoirement dans chacune
des conditions et il est échangé. Ensuite, la procédure de fusion est appliquée sur les régles modifiées.

L’opérateur de mutation. Cet opérateur est appliqué sur la population en fonction d’une proba-
bilité Pt donnée. Il est présent & trois niveaux : au niveau d’une condition compléte, d'un intervalle
ou des bornes d’un intervalle.

La mutation d’une condition compléte consiste & supprimer, pour une régle donnée, la condition
correspondant & 'une des bandes avec une probabilité Pmut,cond' Plusieurs intéréts : la simplification
de la régle, la généralisation, et ’épuration (I’algorithme considére cette bande comme bruitée ou pauvre
en informations).

Le second type de mutation consiste & sélectionner avec une probabilité Pmut,int un intervalle dans
I’une des conditions C' puis & I’éliminer, & le couper en deux, & le remplacer si le nombre d’intervalles
autorisés pour cette régle particuliére a été atteint, ou & ajouter un intervalle dans C'. Le découpage d’'un
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intervalle consiste a choisir un point de coupe aléatoirement puis a les séparer si leur taille est suffisamment
large (par exemple, [10;100] est découpé en deux intervalles non consécutifs [10; 15] A [17; 100] mais [1; 3]
est découpé en [1;2] A [2;3]). Son intérét est d’explorer les valeurs continues du spectre en-dessous de la
résolution du pas de recherche de I'opérateur d’initialisation.

Enfin, la mutation des bornes d’un intervalle avec une probabilité modifie les deux bornes

B mut,borne
par glissement (shift), élargissement ou modification d’une seule des deux bornes de la facon suivante.
Soit wy et wo deux variables aléatoires réelles dans l'intervalle [0; 1]. Soit « la quantité de bruit ajouté,
Paugmentation de la taille des intervalles et v le glissement des intervalles. Un intervalle [a; b] est modifié

aléatoirement en [a””; "] comme suit :

(ajout de bruit)
l=ab—a) d=(@—-0)+2wl b =(b-1)+2wsl (5.11)

(augmentation ou réduction centrée de la taille des intervalles)

o = ) pU o)y (afb) | S o) (5.12)

(glissement & gauche ou a droite)

a" =a + v(b” _ a//) b ="+ v(b” _ a/l) (5_13)

Cet opérateur permet d’affiner pas a pas la contrainte spectrale découverte globalement par les autres
opérateurs pour une classe donnée. Les régles modifiées sont toutes systématiquement validées par la
procédure de fusion. Dans notre systéme, les probabilités affectées & chaque opérateur sont dynamiquement
adaptées (nous les avons nommés opérateurs a tauz progressif ), en fonction de 1’écart-type de la mesure
de performance (fitness) observée sur I’ensemble des individus. Si I’écart-type décroit, la population
devient monotone et un individu émergeant, peut étre un minimal local, risque de coloniser le reste de la
population. Dans ce cas, le taux de mutation est progressivement remonté (Pyyt = Pmut + (1 — Pmut) *
Tup, soit une fonction croissante, bornée par 1). A Pinverse, si I’écart-type est trop important, le taux
de mutation est sans doute trop élevé, et il est diminué a chaque itération (Pt = Prut — Pmut * Tup,
soit une fonction décroissante strictement positive). A D'utilisation, dans les problémes de télédétection
que nous avons testés, le taux se stabilise autour de 16% pour une initialisation & 30%.

L’intérét de I'opérateur de mutation est le parcours non-linéaire de I’espace de recherche. Ainsi, un
glissement (shift) de 10% & gauche des valeurs d’un intervalle est obtenu avec le méme effort (un appel de
Popérateur) que I’ajout d’un intervalle dans une disjonction particuliére, mais qui peut représenter une
valeur de la fonction d’évaluation plus élevée pour la régle en question.

5.3.1.7 Fonctions d’évaluation et de sélection

Comme dans les autres algorithmes que nous avons vus, la fonction fitness définit la performance
d’un individu particulier par rapport au reste de la population. Un individu I est évalué en calculant
la corrélation entre le vecteur obtenu par M(I, P) et les informations expertes correspondantes pour un
échantillon donné, puis en calculant la moyenne pour tous les échantillons disponibles dans le jeu d’ap-
prentissage. La corrélation est définie comme la racine carrée de la moyenne des carrés des éloignements
des proportions trouvées par rapport a l'expert. Les échantillons experts comprennent soit les propor-
tions attendues pour chacune des classes (classifieur flou), soit des intervalles de proportions (classifieur
a intervalles flous). Dans ce cas, la corrélation est établie entre les intervalles spectraux spécifiés par la
regle et les intervalles experts.

De nombreuses stratégies de sélection ont été testées et sont disponibles pour 'utilisateur [Blickle et
Thiele, 1995]. Différentes valeurs pour des parameétres comme le taux de croisement et de mutation, le
nombre d’individus dans la population initiale et le nombre de générations ont été optimisées, et celles
retenues pour les études de cas seront présentées dans le chapitre 7.
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5.3.2 L’algorithme GramGen
5.3.2.1 Intéréts de la programmation génétique

La représentation offerte par le paradigme de la programmation génétique offre plusieurs avantages
qui nous intéressent ici en classification d’images :

1. La représentation des régles de classification par des arbres syntaxiques est a priori un bon choix
pour une lisibilité intuitive et une validation éventuelle par un expert humain.

2. La possibilité de définir des opérateurs terminaux personnalisés, adaptés au probléme & résoudre.

3. Le traitement par ’algorithmique évolutionnaire laisse supposer une résistance accrue aux données
bruitées et aux minima locaux trés présents en télédétection.

4. La possibilité de définir soi-méme les opérateurs génétiques permet une interaction plus approfondie
avec I’expert humain (conditions d’arrét spécifiques au domaine d’étude, fonction d’évaluation pou-
vant intervenir sur les nombreux parameétres des arbres produits : taille, profondeur, équilibrage, ...).

5. Enfin, le formalisme des solutions permet a la fois de résoudre des problémes de classification comme
de régression en télédétection.

Ces avantages permettent de résoudre efficacement des problémes de classification d’images tout en
produisant des classifieurs compréhensibles. Des traitements comme le calcul arithmétique entre bandes
spectrales ont souvent été utilisés comme pré-traitement en vue de séparer certaines classes qui perturbent
la classification d’images (par exemple, I’eau qui peut avoir une réponse hétérogéne dans certains cas),
comme moyen direct de classification ou comme moyen de construire de nouveaux canaux servant a
reconstruire une image plus riche compensant éventuellement les informations manquantes.

Une application intéressante de la programmation génétique peut donc étre la découverte d’index
comme 'indice de végétation normalisé® ou I’indice de brillance®, comme nous le montrerons dans le cha-
pitre 7. La découverte automatique de tels index permettrait de proposer & I’expert humain de nouvelles
formules, soit pour améliorer la performance des index existants, soit pour en proposer de nouveaux,
mieux ciblés en fonction des classes a trouver.

Ce paradigme a donc été étudié sur un jeu d’images afin de retrouver des index connus. Commencgons
par rappeler, pour la suite, un certain nombre de termes utilisés dans ce domaine [Koza, 1992] :

— Symbole non terminal. Symbole de la grammaire ne servant que pour le support des dérivations,

uniquement présent dans les arbres génotypiques.

— Symbole terminal, opérateur terminal ou opérateur de calcul. Symbole présent a la fois
dans un arbre génotypique comme phénotypique. Dans les algorithmes présentés dans les sections
suivantes, le terme ne désigne pas la valeur d’un nceud précis, mais plutot le mot-clé correspondant
a ce nceud. Par exemple, opMUL, opSIN ou opCST” sont des symboles terminaux.

— Opérateur de ncoeud ou fonctions. Désigne les symboles qui sont des feuilles dans ’arbre gé-
notypique (jamais dans l’arbre phénotypique) et qui correspondent & des fonctions d’arité N > 0,
comme opMUL.

— Terminal feuille. Désigne les symboles qui sont des feuilles dans ’arbre phénotypique et qui
correspondent & des fonctions d’arité 0 (constantes, variables exogénes, ...) comme par exemple
opCST ou opARGS.

— Disjonction grammaticale. Partie & droite d’une régle de production contenant une ou plusieurs
conjonctions et correspond & un choix de dérivation.

— Conjonction grammaticale. Partie d’une disjonction correspondant & un symbole terminal ou
non terminal.

Chacune de ces notions a été introduite et développée dans notre algorithme, soit au niveau de la

grammaire, soit au niveau des opérateurs génétiques, et elles sont détaillées dans les sections suivantes.

5 _ XS3—-XS2
NDVI = XS34+XS2

SBI = VX522 + X532
7Constante instanciée.
8 Argument instancié, c’est-a-dire pointant vers 1’un des attributs d’un échantillon.
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5.3.2.2 Algorithme général

Le principe général de la découverte des régles par programmation génétique a déja été présenté
dans l'algorithme A3, sauf qu’ici, les régles introduites par 1’algorithme correspondent & des structures
arborescentes (arbres) formées d’opérateurs de nceud et de terminaux feuille. Nous avons utilisé ce principe
pour implémenter deux algorithmes distincts, le premier (ProgGen) présentant une approche simplifiée
de la programmation génétique, le second (GramGen) implémentant en plus un systéme de contraintes
sur la représentation des arbres, en utilisant une grammaire définie au préalable par l'utilisateur.

La différence entre les deux algorithmes est située au niveau de 'opérateur d’initialisation et des
opérateurs de mutation. Dans le cadre de ProgGen, la liste des opérateurs terminaux est fixée au début
de ’algorithme par 'utilisateur. Il peut associer a chacun de ces terminaux une probabilité indiquant de
maniére statistique la fréquence de leur présence dans les arbres engendrés. Ces probabilités influencent
l'opérateur d’initialisation ainsi que les opérateurs de mutation qui en tiennent compte lors du rempla-
cement d’un sous-arbre complet par un autre. A I'inverse, le systéme GramGen utilise une grammaire,
aussi paramétrée par l'utilisateur avant de lancer l’algorithme, dont les opérateurs génétiques tiennent
compte. Ainsi, lors de la phase d’initialisation, du croisement ou de la mutation, les contraintes impo-
sées par la grammaire seront toujours vérifiées. Notamment, pour des raisons d’égalité des chances lors
de la sélection et la création des individus, la démarche retenue dans chacun des cas est une démarche
active, c’est-a-dire que les individus ne sont pas écartés s’ils ne satisfont par les exigences de 1'utilisateur
(probabilités ou grammaire), mais que les opérateurs ont été directement écrits pour éviter que de telles
occurrences ne surviennent, dans tous les cas ot cela a été possible.

Les opérateurs génétiques de ProgGen permettent une plus grande liberté pour les opérateurs de
croisement et de mutation. Par exemple, chaque nceud terminal peut étre remplacé soit par I'un des
opérateurs constants (opCST, ...) soit par un argument (opARG), a cause de 'absence de grammaire.
Pour ne pas alourdir les sections suivantes, seuls les opérateurs, fonctions, parameétres et remarques
concernant le systéme & base de grammaire GramGen est décrit. La section suivante présente donc le
formalisme retenu pour la description des régles grammaticales guidant la découverte des arbres.

5.3.2.3 Formalisme de la grammaire

Les systémes a base de programmation génétique sont connus pour amplifier la taille des arbres
lors de la recherche d’une solution fiable. Une étude présentée dans [Ross et al., 2002] présente un arbre
correspondant & un indicateur minéralogique nécessitant une cinquantaine de nceuds pour étre efficace.
L’arbre produit ne propose pas forcément une explication claire et intuitive pour cet indicateur & une
personne non experte. Une interprétation rigoureuse des individus produits est pourtant nécessaire a fin
de validation. Des contraintes pour simplifier les arbres ont été largement proposées, comme par exemple
celles décrites dans [Montana, 1994] consistant & typer les nceuds et n’admettre que les constructions
grammaticales autorisées par ce typage. Cependant en télédétection, les données ont souvent le méme
format au sein d’une image donc ce genre de typage n’est pas nécessaire. Des contraintes basées sur une
grammaire nous semblaient plus appropriées.

Concernant le choix de la grammaire, les systémes & base de Context Free Grammar (CFG) sont
parmi les plus courants [Freeman, 1998; Javed et al., 2004]. Cette grammaire est formelle, simple, générale
et peut étre mise sous forme normale (ce qui est rapide et efficace pour les algorithmes de parsing). Elle
est plus connue sous sa forme dérivée, la forme de Backus-Naur (BNF), utilisée pour décrire les langages
de programmation.

Formellement, une CFG peut étre définie comme un quadruplet G = (V;,V,,, P, S) ou :

— V4 est un ensemble fini de terminaux,

— Vi, est un ensemble fini de non-terminaux,

— P est un ensemble fini de régles de production,

— S est un élément de V,, et représente de maniére unique le symbole de départ (start symbol).

Les éléments de P sont de la forme V;, — (V; U V,,)*.

Dans le cas de Gram@Gen, le start symbol est dérivé en suivant les régles de production jusqu’a
produire un ensemble ne contenant que des symboles terminaux. La totalité de cette dérivation est



94 CHAPITRE 5. ALGORITHMES DE CLASSIFICATION

A\ /s\\s AN

op? S /|S\ OpADD T | opADD /T\ S\
opCST OpADD S S opCST OpARG OpADD S S opARG
opCST opCST OpARG opCST

S - opADD S S | opCST | opARG (P)

F1a. 5.10 — Arbres génotypiques pouvant étre produits pour la régle de dérivation (P) dans le cadre de
la syntaxe de GramGen.

reproduite sous forme d’arbre, désigné dans la suite par arbre de dérivation ou arbre génotypique. Ainsi,
la traduction d’une régle A — B renvoie un arbre de sommet A lié & un nceud B. Une régle A — BC
renvoie, quant A elle, un arbre de sommet A possédant deux fils B et C. La figure 5.10 montre quelques
exemples d’une grammaire et d’arbres génotypiques associés.

AN R AN

opADD S S opADD S S opADD S S
w7 N [ N\
opCST opADD S S opCST OpARG OpADD S S opARG
opCST opCST OpARG opCST
opADD opADD opADD
Ao /\ / \
opCST OpADD opCST OpARG OpADD OpARG
opCST opCST OpARG opCST

F1G. 5.11 — Conversion des arbres génotypiques en arbres phénotypiques.

A un instant donné, un symbole non terminal ne peut étre dérivé (en un ou plusieurs autres symboles)
qu’en utilisant une seule des régles de production, le symbole « | » séparant les disjonctions. La création
des individus génétiques se fait en deux temps : la grammaire sert a définir dans un premier temps un
arbre génotypique Ag, puis cet arbre est transformé en un arbre phénotypique Ap correspondant & la
formule de calcul proprement dite. L’arbre Ap est obtenu en remplagant tout sous-arbre génotypique Ag,
contenant un sommet X et N+ 1 branches par un sous-arbre phénotypique A’ dont le sommet correspond
a la premiére branche de A}, (représentant une fonction d’arité N) et dont les N branches correspondent
aux branches 2 & N + 1 de P’arbre Aj,. L’arbre phénotypique complet est obtenu en effectuant tous les
remplacements nécessaires. La figure 5.11 illustre une telle procédure. Dans cette procédure, la grammaire
n’est plus nécessaire. La premiére branche de chaque nceud est considérée comme la fonction et les
branches suivantes ses arguments.
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5.3.2.4 Opérateurs terminaux

Les opérateurs terminaux constituent des unités atomiques pour les arbres phénotypiques produits
par programmation génétique. Nous distinguons deux sortes de terminaux : les terminaux feuilles (ar-
guments ou constantes), présentés dans le tableau 5.1, et les fonctions, présentées dans le tableau 5.2.
Nos expérimentations ont nécessité 1’utilisation de tous les terminaux et de la majorité des opérateurs
présentés dans ces tableaux, notamment les opérateurs mathématiques, les opérateurs d’arité 3 et les opé-
rateurs d’arité N. En plus de 'implémentation des fonctions classiques, quelques fonctions intervenant
souvent dans les problémes de régression en télédétection ont été rajoutées. Il s’agit des fonctions d’arité
N, capables de s’évaluer sur un pixel entier.

Symbole Description

opFIXED Constante entiére ou réelle directement spécifiée
dans la grammaire (ex : 1.03E-06).

opRANGE Plage de constantes entiéres ou réelles (ex : [4;7]).

opCST Constante instanciée aléatoirement lors de la créa-
tion de ’arbre ou du nceud. Sa valeur ne changera
qu’a la prochaine mutation génétique.

opARG Argument de la fonction. Chaque échantillon

d’apprentissage étant représenté par un vecteur de
taille connue, chaque argument est instancié par
I'une des valeurs de ce vecteur au moment de la
création du nceud. Cette instanciation est ensuite
modifiée au cours d’'une mutation génétique.
Constantes diverses.

opTRUE, opFALSE, opPI, opE, opPINF (+oc), opMINF
(—00), cstDIVIZERO (représente une division par zéro), cs-
tOVERFLOW (représente un dépassement de capacité comme

log(0))

TAB. 5.1 — Liste des terminaux feuilles accessibles a 'utilisateur pour la représentation des arbres.

L’utilisateur a le choix de ’ensemble des terminaux & utiliser dans les programmes génétiques, soit
sous forme de probabilités dans les arbres créés avec ProgGen, soit dans les régles de production avec
GramGen.

Les opérateurs de type opPUSH /opPOP sont des opérateurs spéciaux que nous avons mis au point car
ils sont utiles en télédétection. Ils facilitent la gestion des files FIFO (ang., First In, First Out) permettant
aux arbres de construire dynamiquement des tableaux dont la taille n’est connue qu’au moment de leur
exécution. L’arbre étant interprété par profondeur d’abord (les nceuds fils sont toujours exécutés avant le
nceud courant), il est dés lors possible pour un nceud d’effectuer des calculs sur une file contenue dans ’'un
de ses nceuds descendants. Les opérateurs permettant ce type de calcul sont présentés dans le tableau 5.2.
La figure 5.12 montre un exemple d’'une grammaire utilisant de tels opérateurs, un arbre génotypique
qu’il est possible d’engendrer avec cette grammaire, I’arbre phénotypique associé et son interprétation
sémantique.

Si nécessaire, des conversions inter-types ont lieu au niveau des nceuds lors du passage des valeurs
(ainsi une constante strictement positive renvoyée par un opérateur mathématique est convertible en un
booléen égal & vrai, et inversement). Enfin, chacun de ces opérateurs est associé & un parameétre indiquant
s’il est commutatif ou non. Ce paramétre est utilisé lors de la comparaison structurelle de deux arbres,
dont nous nous servons comme critére de diversité dans ’opérateur de terminaison.

5.3.2.5 Opérateur d’initialisation

Le role de 'opérateur d’initialisation des individus consiste & sélectionner les régles grammaticales
ainsi que l'ordre de leur application afin de respecter un certain nombre de contraintes fixées par 1'uti-
lisateur. Ceci servira & créer la premiére population génétique ou les nouvelles branches réclamées par
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Symbole

Description

opOPP, opINV, opCOS, opSIN, opTAN, opLOGE (logarithme
népérien), opEXP, opSQRT, opABS, opCEIL, opFLOOR,
opACOS, opASIN, opATAN, opCOSH, opSINH, opTANH,
opACOSH, opASINH, opATANH, opLOG10, opSIGN, op-
FACT (z!), opSQ (z2), opCUB (z?), opLOG2, opP10 (10%),
opCURT ( ¥/x), opP2 (2%)

Opérateurs mathématiques d’arité 1.

opNOT, opCOMP1 (complément & 1), opCOMP2 (complé-
ment & 2), opSHL (shift gauche), opSHR (shift droite),
opROTL (rotation gauche), opROTR (rotation droite)

Opérateurs booléens d’arité 1.

opIP (partie entiére), opFP (partie flottante), opRND (arrondi
entier), opARGN (sélection de ’argument N de la fonction
courante)

Opérateurs divers d’arité 1.

opEMPTY (file vide), opPOP (renvoie le 1°" élément), op-
PUSH (empile le 1°" argument, renvoie le nombre d’objets
empilés), opPSUM (somme des objets de la file), opPAVG
(moyenne), opPMED (médian), opPAND (ET booléen entre
tous les objets), opPOR (OU booléen), opPEQUI (vrai si tous
les objets sont identiques, soit positifs, soit nuls, fauz sinon)

Opérateurs d’arités diverses nécessaires a la ges-
tion d’une file FIFO permettant de gérer des ta-
bleaux de taille dynamique. La figure 5.12 en pré-
sente un exemple.

opADD, opSUB, opMUL, opDIV, opPOW, opINF (<), opSUP
(>), opINFE (<), opSUPE (>), opEGAL, opDIFF, opPRCT
(z* 785), opPRCTA (z* (1+ 145)); opPRCTS (z (1 — 1&5)),
opCOMB (C}), opPERM (Py), opAPRX (|z —y| < 1E —4),
opMOD (modulo), opQUOT (division entiére), opXRT ( ¥/z)

Opérateurs mathématiques d’arité 2.

opAND, opOR, opXOR, opXSHL (z est shifté a gauche de y
bits), opXSHR (z est shifté a droite de y bits), opXROTL (ro-
tation a gauche de z de y bits), opXROTR (rotation a droite de
z de y bits), opIMPL (implication booléenne), opEQUI (équi-
valent booléen)

Opérateurs booléens d’arité 2.

opITE (si z > 0 alors y sinon z), opLERP (interpolation li-
néaire entre y et z : x * (z — y) + y), opINTER (appartenance
A un intervalle : vrai si x € [y; 2], fauz sinon)

Opérateurs d’arité 3.

opSOMM (somme de tous les arguments de I'opérateur), op-
PROD (produit), opAVG (moyenne), opMED (median), op-
MIN, opMAX, opETYP (écrat-type), opVAR (variance), opS-
QSOM (somme des carrés), opSQAVG (moyenne des carrés),
opMAND (ET booléen), opMOR (OU booléen), opMEQUI
(vrai si on a l’équivalence des arguments), opSELECT (sé-
lection de la valeur de I’argument N de I’opérateur)

Opérateurs d’arité N. Le comportement de ces
opérateurs dépend du nombre de branches qui leur
sont associées. L’utilisateur définira par la gram-
maire l'arité de ces opérateurs. Par exemple : S —
opSOMM A B, S — opSOMM A B C, ...

TAB. 5.2 — Liste des opérateurs accessibles a 'utilisateur pour les nceuds des arbres.

lopérateur de mutation. Si plusieurs possibilités se présentent, le choix de la régle de production a ap-
pliquer est déterminé en fonction de plusieurs critéres, basés sur la taille des arbres et sur la profondeur
souhaitée. Les deux phases principales consacrées & la construction des nouveaux individus sont les sui-
vantes :

— Déterminer la hauteur H(X) ou le nombre minimal de terminaux T'(X) qu’il est possible d’engen-

drer pour chaque symbole X dans le meilleur des cas.

— Lors de la construction d’un sous-arbre ou d’un arbre complet, déterminer le symbole & utiliser en

fonction d’une certaine probabilité aléatoire lice & H(X) ou T'(X).

La premiére phase n’est effectuée qu’une seule fois, & partir du moment ou la grammaire a été
paramétrée par 'utilisateur. Cette phase est décrite dans lalgorithme A4. La figure 5.13 présente une
grammaire paramétrée a ’aide de I'algorithme A4. Le paramétrage représente la hauteur et le nombre
minimal de symboles qu’il est possible d’obtenir au mieux dans un arbre génotypique dérivé d’un symbole
donné. L’étude des valeurs maximales sont peu intéressantes pour la plupart des grammaires car elles
sont infinies. L’algorithme converge méme dans le cas de régles de grammaire full-recursive (ex : A — A)
dont les régles seraient alors automatiquement ignorées.

La seconde phase est effectuée lors de la création effective des individus ou & chaque fois qu’un opéra-
teur génétique ordonne la création d’un sous-arbre. Elle est présenté dans 1’algorithme A5. L’algorithme
prend en paramétre une grammaire, le symbole non-terminal de départ (soit le start symbol S, soit un
autre) ainsi que les contraintes de 'utilisateur en terme de taille et de hauteur d’arbre. Le résultat de
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ALGORITHME A4
ALGORITHME D’INITIALISATION DES SYMBOLES DE LA GRAMMAIRE DANS GRAMGEN

~» HAUTEUR(X) - Sous-fonction de calcul de la hauteur minimale d’un symbole X
~» NOTE - H(X) est un paramétre du symbole X

soit h := oo
pour chagque disjonction D de la régle X faire
soit hc:=0
pour chaque conjonction C de D faire
he := MaX(he, H(C))
fin pour
h := MiN(h, hc)
fin pour
HAUTEUR(X) :(= h+1

~» TAILLE(X) - Sous-fonction de calcul de la taille minimale d'un arbre créé par la dérivation d’'un
symbole X
~» NOTE - T'(X) est un paramétre du symbole X
sott s = oo
pour chaque disjonction D de la régle X faire
soit sc =0
pour chaque conjonction C' de D faire
sc=sc+T(C)
fin pour
s = MIN(s, sc)
fin pour
TAILLE(X) := s

~» PARAMETRE - La liste des symboles L = V; U V,, d'une grammaire G
~» RESULTATS - La hauteur et la taille minimale de chacun des symboles de L (grammaire
paramétrée)
pour chaque symbole X de L faire
st X est terminal alors
H(X)=0
T(X)=1
sinon
H(X)=0o0
T(X)=o00
fin st
fin pour
répéter
pour chaque symbole X non terminal de L faire
H(X) := HAUTEUR(X)
T(X) := TAILLE(X)
fin pour
jusqu’a ce que les paramétres des symboles de L aient convergé
Renvoie la grammaire paramétrée

Algorithme 4: Fonction INI'TSYMBOLES
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# Grammaire : Interprétation de l'arbre final :
’g Ré%i_'g;d“ type <intervalle> OR <intervalle> ... Renvoie vraisi un vecteur de trois arguments [x;y;Z]
->

est compris dans les intervalles {[X i Xmax] 7 [Ymin:Ymax]

# Définition d'une file d'opérateurs 'OR' combinant de i [ZminiZmasd ¥
# 12 N intervalles
TOR -> opPOR File
File -> opPUSH Interv File | opPUSH Interv opEMPTY

# Renvoie vrai'si X, est compris dans l'intervalle défini
Interv -> opINTER opARG opCST opCST

3
|
TOR

— opPOR
opPOR  File
= T~ opPUSH
OpPUSH  Interv File N(F’—\
N CpTER
—_— OopPUSH

OopINTER 0opARG opCST opCST opPUSH Interv File
OpARG opCST opCST OopINTER opPUSH

OopINTER  opARG opCST opCST opPUSH Interv opEMPTY
OpARG opCST opCST OpINTER OpEMPTY

OpINTER OpARG opCST opCST
OpARG opCST opCST

Fi1G. 5.12 — Grammaire utilisant ’opérateur opPUSH.

Symbole | H(Symbole) | T(Symbole)
S 3 1
E 2 1
S —FE 0) 1 1
E—-OFE |V A% 1 1
O — opADD | opMUL opADD | 0 1
V — opARG | opCST | 5.34 opMUL | 0 1
opARG | O 1
opCST 0 1
5.34 0 1

FiG. 5.13 — Exemple d’'une grammaire et de son paramétrage.

I’algorithme est un arbre génotypique complet ou un sous-arbre qui peut étre intégré dans un arbre plus
vaste, dont le tout sera & convertir en arbre phénotypique avant I’évaluation de ’individu. L’algorithme
fonctionne en contrainte exacte, c’est-a-dire que la taille spécifiée par 'utilisateur en nombre de noeuds
sera toujours respectée au mieux. Si 'utilisateur choisit par exemple une taille paire N, et que la gram-
maire ne peut produire que des arbres dont la taille est impaire, il y a une probabilité de 0.5 qu’un
individu de taille N — 1 soit produit, de la méme fagon que pour un individu de taille N + 1. Pour une
valeur nulle ou négative, 'arbre produit sera le plus petit possible. Si I'utilisateur souhaite des tailles
diverses, il doit choisir une plage de valeurs admissibles. Une valeur dans cette plage est alors sélectionnée
de maniére aléatoire puis passée en paramétre de l’algorithme. Celui-ci est appelé autant de fois qu’il est
nécessaire pour constituer soit un individu, soit un pool complet. Ainsi, il est possible d’obtenir un pool
dont la taille des arbres peut étre spécifiée par différentes fonctions de probabilité : constantes, linéaires,
gaussiennes, etc.

La détermination du symbole non terminal & dériver lorsque ’arbre de dérivation actuel en contient
plusieurs, c’est-a-dire le style de dérivation retenu, n’est ni par la gauche (leftrnost derivation), ni par la
droite (rightmost derivation). En fait, nous avons obtenu les meilleurs résultats en choisissant & chaque
fois de maniére aléatoire le symbole non terminal dans I’arbre en cours de dérivation. De plus, cela garantit
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une certaine diversité dans le pool, méme si la grammaire est mal construite.

ALGORITHME A5
ALGORITHME DE CREATION D’ARBRES GENOTYPIQUES A PARTIR D’UNE GRAMMAIRE

~» PARAMETRES - Une grammaire paramétrée G, un symbole non terminal A de départ, la taille ou
la hauteur f,s. souhaitée pour I'arbre

~+ RESULTAT - Lindividu créé

~> f estle critére & optimiser sur un symbole X, soit H(X), soit T'(X)

~» CHOIX(L) est une fonction qui choisi de maniére uniformément aléatoire un élément de
'ensemble L

~+ 1(n) est une fonction renvoyant la probabilité de sélection d’un symbole en fonction de la taille de
dépassement estimée n pour le critere retenu f (différence entre la taille minimale prévue et la taille
souhaitée)

soit R un arbre de sommet A
tant que R contient pour feuille un symbole non terminal faire
soit L la liste des feuilles de l’arbre R
soit fmin =0
pour chaque symbole X de L faire
fmin = fmin + f(X)
fin pour
soit L, la liste des symboles non terminauz de L
soit T := CHOIX (L)
pour chaque disjonction D; de la partie droite de la régle T faire
80it foqqa := f(D;)
soit fsup := f(T)
Di,suppl = fmzn + fadd - fsub - fask
Di,proba = w(Di,suppl)
fin pour
Choisir une disjonction D € D1, ..., D, de la régle T en utilisant les probabilités de sélection Dpyopq
soit R;,s un arbre de sommet T et dont chaque branche est l'une des conjonctions de J
Remplacer dans l’arbre R le symbole T par le sous-arbre R,
fin tant que
Renvoyer R, un arbre de sommet A dont les feuilles sont des symboles terminauz

Algorithme 5: Fonction CREATIONARBRE

Nous avons sélectionné plusieurs fonctions probabilistes pour 1 (n) (algorithme A5) qui présentaient

des propriétés intéressantes au niveau de leurs tableaux de variations. Par exemple, nous avons testé

(axn?) e . .
P(n) = ﬁ\nl et ¥(n) =e o , avec a, b constantes. Celle retenue pour ses bonnes qualités de sélection

_(2xn?)

fut ¢(n) = e 52

5.3.2.6 Opérateur de croisement

L’opérateur proposé pour croiser deux arbres génétiques est basé sur les deux faits suivants :

— les individus doivent rester cohérents a la sortie de I’'opérateur. Notamment les régles de grammaire
seront toujours respectées ainsi que les arités des nceuds (un opérateur terminal ne doit jamais
changer d’arité),

— la probabilité de sélection de chacun des noeuds doit étre identique. Méme si dans la réalité, les
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recombinaisons génétiques mettent en ceuvre un systéme chromosomique trés complexe, il est bon
de garder la méme équité de brassage comme dans le cas des chaines binaires. D’autant plus que
cela évite de privilégier les noeuds situés au sommet de I’arbre par rapport aux nceuds internes,

— l'algorithme doit apporter une garantie qu’a la fin de ’application de I'opérateur génétique, le ou

les enfants résultant(s) devront étre différents des parents.

On ne travaille que sur la description génotypique des arbres. A la fin de I'application de 'opérateur
génétique, les arbres résultant sont convertis en arbres phénotypiques et insérés dans la nouvelle popu-
lation. L’utilisation des arbres génotypiques garantit les trois points ci-dessus. Par exemple, I’échange
de deux sous-arbres, méme dérivant d’un opérateur terminal identique, ne sont pas forcément échan-
geables s’ils ne sont pas dans le méme conterte grammatical, c’est-a-dire s’ils dérivent de deux régles de
grammaires distinctes.

L’algorithme A6 présente le fonctionnement de 'opérateur de croisement.

ALGORITHME A6
ALGORITHME DU CROISEMENT DANS GRAMGEN

~ PARAMETRES - A; et A, sont les deux arbres génotypiques a croiser

~+ RESULTATS - A et A} sont les deux arbres génotypiques obtenus

~> S(A) est une fonction qui renvoie la liste des symboles left-defined de la grammaire G définis
dans l'arbre A

~ DERIV(A,X) est une fonction qui renvoie la liste des nceuds de I'arbre A correspondant au
symbole X

~ CHOIX(L) est une fonction qui choisi de maniére uniformément aléatoire un élément de
'ensemble L

~» CHERCHEFILS(A,n) est une fonction qui renvoie le fils numéro n du nceud A

~ X est un symbole de la grammaire

~ ny et ny sont des nceuds d’'arbres génotypiques

pour chaque arbre A € {A1, Ay} faire
tant que NBFILS(A) = 1 faire
:= CHERCHEFILS(A4, 1)
fin tant que
fin pour
soit L := S(A1) N S(Az)
soit X := CHOIX(L)
soit N1 := DERIV(A;, X)
soit Ny := DERIV(Ag, X)
soit ny := CHOIX(N:)
s01it ng := CHOIX(N3)
- Echanger ny1 et ny dans les arbres Ay et As
- Renvoyer les arbres résultants A} et Aj

Algorithme 6: Fonction CROISEMENT

Le seul cas pour lequel les enfants seraient identiques aux parents est le cas d’un arbre génotypique
filiforme. Ceci correspond & une grammaire constituée d’un seul symbole terminal, autrement dit ’arbre
phénotypique correspondant est constitué d’un seul symbole. Dans ce cas, le croisement ne peut pas faire
mieux que d’échanger ce symbole avec 'un des symboles correspondant de 'autre parent, en garantissant
le respect de la grammaire. Aprés 'opération de croisement, il est possible que le critére de taille moyenne
des arbres ne soit plus respecté. Ce critére intervient alors a posteriori dans la fonction d’évaluation.

Les parameétres définis par l'utilisateur (outre la grammaire) sont peu nombreux :
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— la quantité Q d’individus a croiser. Beaucoup [Goldberg, 1989; Schoenauer et Michalewicz, 1997]
considérent que 80% est une valeur acceptable, mais nous ’avons fait varier entre 70% et 95%,
— et le type de sélection des individus & croiser.

5.3.2.7 Opérateur de mutation

Le principe incrémental, adaptatif et la plus grande latitude permise par cet opérateur nous a conduits
a définir trois sous-opérateurs différents et complémentaires, qui sont sélectionnés chacun de maniére
uniformément aléatoire. Chacun de ces opérateurs prend en entrée un arbre génotypique et renvoie en
sortie ’arbre modifié. La conversion en arbre phénotypique est nécessaire avant I’insertion dans la nouvelle
population pour le calcul de la fonction d’évaluation. Dans tous les cas, les contraintes déja exposées pour
Popérateur de croisement ont été respectées ici aussi (cohérence, équité de sélection, production d’enfants
nouveaux).

Les trois opérateurs sont les suivants :

— Mutation d’un nceud : consiste & supprimer l'un des nceuds de 'arbre et & le remplacer par un
équivalent respectant la grammaire.

— Mutation d’un terminal : consiste & modifier I'une des valeurs d’un terminal numérique (constante
ou variable exogéne).

— Mutation par auto-croisement : consiste a croiser 'arbre avec lui-méme. Cette mutation est com-
plémentaire par rapport aux autres car elle permet par exemple d’inverser numérateur et dénomi-
nateur, ce qui n’est pas possible dans les autres cas.

A cause du fonctionnement interne de cet opérateur, sa présentation est plus efficace sous la forme
d’un diagramme que d’un pseudo-algorithme. Nous avons exceptionnellement représenté le principe de
lopérateur de mutation sur la figure 5.14, malgré son manque de clarté.

Globalement, les différents opérateurs garantissent que les contraintes numériques de 1'utilisateur
sont respectées au mieux (par exemple, le fait que la taille de ’arbre soit toujours dans un intervalle de
tailles pré-définies) de méme que la grammaire. Certaines procédures ont été mises en place pour gérer
le cas des grammaires mal congues : dans le cas du dernier opérateur (mutation par auto-croisement), il
est impossible d’échanger un noeud avec 'un de la descendance de ce nceud. Cependant, cela peut arriver
avec une grammaire autorisant les arbres filiformes. Dans ce cas, le probléme est détecté et ’arbre non
muté est renvoyeé.

Les paramétres définis par l'utilisateur sont les suivants :

— la quantité Q d’individus & muter. Nous avons considéré des pourcentages compris entre 5% et
45%,

— le type de sélection des individus & muter,

— et dans le cadre de 'opérateur de mutation d’un terminal, la nouvelle valeur est sélectionnée dans
un intervalle [z —v; z+v] o x est la valeur précédente et v est un parameétre de variation dépendant
de la taille de la plage autorisée pour cette valeur (rendant ainsi 'opérateur indépendant de I’échelle
des données).

Malgré la complexité de 'opérateur de mutation, la plupart des opérations sont conduites de maniére
automatique par la grammaire, ce qui décharge 'utilisateur de tout paramétrage important. Néanmoins,
cet opérateur peut étre amélioré. Par exemple, le principe des opérateurs a taux progressif retenu pour
ICUX n’a pas encore été testé dans le cadre de ProgGen ou de GramGen. D’autre part, la présence de
constantes entraine une augmentation considérable de ’espace de recherche. Il existe des techniques visant
& geler certains individus et a optimiser localement les valeurs de leurs constantes, mais nous ne les avons
pas encore implémentées. Lors de nos expérimentations, nous nous sommes contentés d’utiliser 'opéra-
teur opCST que trés parcimonieusement, ce qui permet toutefois d’atténuer l'effet du sur-apprentissage
et de rendre les formules trouvées légérement plus compatibles avec de nouvelles données. Ces perfection-
nements seront sans doute apportés aux algorithmes par la suite.
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Aest |'arbre & muter

Sélectionne une mutation
génétique aléatoirement
parmi les 3 disponibles

A 4
. . : " " Mutation par auto-
Mutation d'un nceud Mutation d‘un terminal

Faire I @resd Faire l'inventaire S des Descendre jusqu‘a
a!':el '";’7?" ire edciesl symboles terminaux trouver un neeud d'arité
Symboles /e defined de la appartenant a A supérieure & 1
grammaire et appartenant

aA

Faire l'inventaire S des
neeuds de l'arbre

Choisir aléatoirement un
symbole Sn 0 S

Choisir aléatoirement un
symbole Sn 0 S
Mettre a plat les nceuds de
A correspondant & Sn

Pour chaque couple de noeuds de S,
ne conserver que les paires de sous-
arbres non parents, non terminaux
et de symboles grammaticaux

Mettre a plat les nceuds de

A correspondant & Sn Choisir aléatoirement un identiques
noeud NVde A / \
Choisir aléatoirement un
nceud Vde A Si aucune paire n'a pu étre Sinon, choix d’une paire
trouvée - ECHEC de maniére
I'arbre original est renvoyé uniformément aléatoire

Calcule les statistiques du noeud a supprimer pour
respecter les contraintes de |'utilisateur
size = rand(termy,,term,..,) (taille souhaitée de
I'arbre aprés sa mutation)
termC est le nb de terminaux du noeud & supprimer
termP est le nb de terminaux de I'arbre complet
termS = size-(termP-termC) (nb de terminaux
optimaux qu'il faut insérer) !

Si N code une constante
fixée par une plage
[min;max] définie par
|'utilisateur (CST_FIXED)

v

Echange des deux
sous-arbres

A

Calcule la variation autorisée Si N code une Si N code une
— v = p¥(max-min), avec ple p constante & choix
Créer une dérivation de la paramétre de variation constante réelle (CST) multiple (CST_TABLE)
régle de nom « Sn»

contenant un nombre de
symboles optimal termS

Si N code une variable

Remplace la valeur de ¥
par une autre variable
parmi la liste disponible

(ex: X devient Z)

Calcule la nouvelle valeur du

noeud N, & partir de Remplace la valeur de
I'ancienne Ny Npar rand(0,1)

N, = rand(N;-v, N;+v)

Remplace la valeur de
Npar une autre
constante du tableau

Remplacer ¥ par la
dérivation générée

Récupération de I'arbre
muté A4”

Fic. 5.14 — Opérateurs de mutation de GramGen.

5.3.3 Syntheése

Nous avons développé dans cette section deux nouvelles représentations, manipulées par les algo-
rithmes ICUX et GramGen, découvrant des régles capables de traiter le probléme de I'unmizing sans
faire appel & un modéle linéaire (ang., Linear Mizture Model ou LMM), généralement utilisé pour cette
approche [Kriebel et Koepke, 1987; Meerkoetter, 1990; Qin et al., 1996]. Cette représentation a nécessité
la redéfinition de certains opérateurs génétiques en conséquence afin que les individus engendrés soient
cohérents. Ces modeéles étendent les représentations plus simples abordées par ICU et XCS-R. Méme
si ces deux modéles permettent d’obtenir des résultats trés satisfaisants, surtout aprés post-traitements
de la base de régles par algorithme génétique ou par extraction d’un arbre de décision, il nous a semblé
nécessaire de pouvoir procurer & 'utilisateur une représentation qu’il peut directement manipuler, ce qui
ne peut étre apporté que par la programmation génétique.

L’intégration d’une expertise basée sur des intervalles flous dans ICUX permet 4 la fois d’utiliser de
linformation experte mixte, mais aussi de l'information partielle (attributs non renseignés ou absents).
A titre d’illustration, nous pouvons évoquer le cas des régions pour lesquelles I'expert est certain qu’une
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classe X donnée ne s’y trouve pas. Pour inclure ce type d’expertise en apprentissage, il convient de
présenter a I’algorithme des échantillons comprenant une contribution de 0 & 100% pour toutes les classes,
sauf pour la classe X. Ce type de représentation permet d’inclure des connaissances expertes de niveau
supérieur, mais celles-ci sont malheureusement plutéot rares et font encore I'objet d’un support oral.

5.4 Conclusion

Nous avons consacré deux sections a détailler plusieurs algorithmes évolutifs fonctionnant avec des
représentations différentes. La base évolutive de ces algorithmes autorise, sous la condition d’un paramé-
trage adéquat, leur robustesse face a la complexité des données observées en télédétection. De plus, ils
n’imposent aucune régularité sur la fonction étudiée (continuité, dérivabilité, convexité, etc). Au niveau
de l'utilisateur, le choix de I'utilisation de I’'un ou 'autre de ces algorithmes est relativement aisé. Il dé-
pendra en premier lieu du type de probléme & résoudre. En classification hard ou soft, on aura tendance
a utiliser les algorithmes ICU ou XCS-R. En classification floue ou par intervalles flous, on a le choix
entre ICUX et GramGen. Ensuite, tout dépend de la quantité ou de la structure interne des données
elles-mémes. Nous avons observé qu’en général ICU donne de meilleurs résultats que XCS-R,, il est donc
intéressant lorsque I’on recherche des régles simples avec une performance élevée. De plus, la représenta-
tion des régles de ICU est adaptée a la télédétection. Cependant, XCS-R. posséde une bonne capacité de
généralisation, il pourra donc étre employé lorsque l'expertise comprend un nombre de validations terrain
trés faible par rapport & la taille du terrain & étudier, ce qui était souvent le cas pour le projet TIDE.
Concernant le choix entre ICUX et GramGen, il dépend essentiellement du type de données expertes :
I’algorithme ICUX permet de répondre concrétement au probléme de la classification par intervalles
flous, actuellement émergent en télédétection et propose une représentation par blocs plus adaptée a des
données hétérogeénes (comme c’est le cas notamment des classes de végétation étudiées dans le projet
TIDE). L’algorithme GramGen est, quant & lui, réservé a la découverte de fonctions continues dans les
données, par exemple, des indices de végétation. Il autorise aussi I’expert & forger ses propres représen-
tations : celle de ICU peut par exemple étre reproduite dans GramGen. Le choix de I'algorithme peut
donc étre totalement déterminé en fonction des besoins des experts. Cependant, XCS-R. a tendance a
produire des bases de régles de taille importante. Nous montrons dans le chapitre suivant qu’il est possible
de réduire ces bases, sans provoquer une diminution trop importante de leurs performances.
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Chapitre 6

Post-traitements d’un ensemble de
regles

Le post-traitement des bases de régles est une piste intéressante pour contourner certains défauts
lies aux algorithmes d’apprentissage. Dans ce chapitre, nous parlons de post-traitements des bases de
classifieurs obtenues avec XCS-R pour réduire leur taille et améliorer leur lisibilité. Ces post-traitements
ont été développés durant nos travaux et concernent le raffinement des représentations des régles ou la
recherche d’un certain nombre de caractéristiques que renferment ces représentations pour dégager des
remarques intéressantes concernant la structure interne des données (par exemple, le fait que les régles
puissent étre rassemblées sous forme de niches).

Nous verrons dans les expérimentations présentées dans le chapitre suivant que l'algorithme XCS-
R permet de produire des bases de régles d’assez bonne qualité. Le principal défaut que ’on pourrait
cependant reprocher a ces bases est qu’elles contiennent souvent un nombre de régles trop élevé. Ce
chapitre propose de nouveaux post-traitements afin de simplifier les bases de régles de XCS-R. Trois
approches distinctes sont étudiées : une approche génétique pour combiner les régles de la population entre
elles (section 6.1), I’étude d’une fonction d’appartenance pour améliorer la capacité de généralisation des
régles (section 6.2) et enfin un algorithme combinant C4.5 [Quinlan, 1993] avec XCS-R permettant de
transformer une base de régles (représentation plate) en arbre de décision (représentation arborescente,
section 6.3).

6.1 Post-traitements génétiques

Comme nous l’avons vu, XCS-R tente de construire une représentation compléte du probléme
comprenant toutes les combinaisons possibles de paires (<condition> , <action>). Appliquée & de petits
problémes, cette représentation est trés efficace car elle permet & l'algorithme de modéliser les conditions
d’activation pour les échantillons représentant la non-classe C' plutot que directement la classe C, si
cela s’avérait plus efficace. Cependant, pour les données multispectrales ou hyperspectrales, nous avons
remarqué que cette représentation donnait lieu & une base de régles souvent trés grande, par rapport au
nombre de classes & apprendre (par exemple, 2300 classifieurs pour 5 classes, sur une image multispectrale
de quatre bandes). Nous avons donc cherché & optimiser les classifieurs contenus dans un ensemble de
régles apprises pour en réduire le nombre. Cette optimisation consiste & modifier le nombre de classifieurs,
leur paramétre de spécificité et les valeurs des contraintes de la partie <condition> des régles, afin d’en
étudier 'impact sur leurs performances. Comme ’espace de recherche est trés grand, nous avons choisi de
développer un algorithme génétique, spécifique a ’optimisation de chaque type d’informations contenues
dans la population, ce qui nous a amené & proposer trois génomes différents. Le premier (G1) concerne la
simplification par la suppression directe des classifieurs de la base. Le second (G2) s’intéresse a I'influence
des transformations du type agrandissement, réduction et translation des contraintes des classifieurs. Le
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dernier (G3) permet de découvrir de nouveaux classifieurs en recombinant ceux du jeu de régles, a 'image
de l'opérateur de croisement. Nous discutons dans chacun des cas, de la représentation choisie pour le
génome et des principaux opérateurs (initialisation, fonction d’évaluation, croisement, mutation).

6.1.1 Réduction de la base de régles (génome G)

Soit N le nombre de classes. Le génome indique la liste des classifieurs que 'on choisi de garder
parmi ceux de la population apprise. Sa longueur est quelconque. Il est interprété de la facon suivante :

1. Chaque géne est un entier représentant un classifieur du jeu de régles. Il est associé a I'une des
classes a traiter de maniére alternative : si le génome est plus long que N, le géne n; correspond a
la classe ¢ =4 mod N.

2. Pour traiter la classe ¢, un classifieur est choisi dans le jeu de régles de la fagon suivante. La valeur
n; correspond a 'index du classifieur parmi tous ceux qui s’activent pour la classe c. Puisque n; est
initialisé aléatoirement, cette valeur peut correspondre & un nombre plus élevé que le nombre total
de classifieurs dans la population qui correspond & cette classe. Dans ce cas on en prend le modulo.
Par exemple, si no = 123 et qu’il y a 24 classifieurs dans le jeu de régles qui s’activent pour la classe
2, on choisira le classifieur d’index 3 (123 mod 24). Le classifieur choisi sera donc le 3¢ classifieur
qui code la classe 2.

3. Pour assurer la cohérence des génomes produits, les nouveaux jeux de régles obtenus aprés leur
interprétation doivent étre constitués de classifieurs différents. Si lors de 'initialisation, de la mu-
tation ou du croisement génétique, un geéne sélectionne le méme classifieur qu’un autre géne déja
présent, la valeur de celui-ci est augmentée d’une unité et les étapes 2 et 3 sont exécutées autant
de fois que nécessaire.

Les opérateurs génétiques. Le croisement et la mutation sont cohérents puisque l'attribution
des classes pour chaque géne se fait toujours sur une classe qui leur est réservée (les génes situés a la
méme position dans deux individus parents correspondent toujours a la méme classe). Nous utilisons un
croisement & un point et la mutation ne modifie aléatoirement qu'un seul géne par appel.

La fonction d’évaluation ¢;. La fonction fitness définit la performance d’un individu particulier
par rapport au reste de la population. Le calcul de la fonction d’évaluation ¢;(L) pour une liste L de
classifieurs extraits d’un jeu de régles appris en fonction de I'interprétation d’un génome G donné est le
suivant.

Soit une liste de classifieurs L = {C}, : A;(k) = Pi} ou C} est la partie condition du classifieur k,
A;(k) est la partie action du classifieur & représentant la classe A; et Py est la récompense associée au
classifieur k. On commence par chercher la classe A d’un exemple S & partir de la liste de classifieurs L,
en associant a chacune des classes & apprendre A;, une fitness pondérée f1(Lg, S, A;) qui se calcule par :

>itopi * Fi
Z?;o E;

ot Ls = Match(L, S, A;) représente les classifieurs de L qui sont activés par I'exemple S et qui codent
pour la classe A;, S est 'exemple dont il faut calculer la classe, n, est le nombre de classifieurs dans Lg,
et p; et F; représentent respectivement les valeurs de récompense et de fitness associées au classifieur 1.

La classe A de I'exemple S est alors simplement la classe A; qui maximise f;(Lg, S, A;) pour toutes
les classes & apprendre. On cherche alors les classes de tous les exemples de la base d’apprentissage.
Pour obtenir la valeur de ¢1(L), on calcule le taux d’exemples bien classés par rapport au nombre total
d’exemples.

fi(Ls, S, A;) = (6.1)

6.1.2 Transformation de classifieurs (génome G5)

Cette étude vise & connaitre I'influence d’une modification directe des intervalles des classifieurs. Les
deux types de modification étudiées sont 1’élargissement (ou la réduction) de la taille des intervalles et la
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translation (& gauche ou a droite) de ces intervalles dans ’espace de recherche. Ceci permet de généraliser
ou de spécialiser les classifieurs en s’effor¢ant d’optimiser la performance de la base. Chaque géne du
chromosome est un triplet codant chacun respectivement le numéro du classifieur qui va étre modifié, le
parameétre d’élargissement et le paramétre de déplacement a droite (voir la figure 6.1). Les valeurs des
génes appartenant & R, nous avons adapté les opérateurs génétiques en conséquence.

[oa [ A [A e T [N [ A [T [ [ A

FiG. 6.1 — Représentation du génome Gb.

Les valeurs des génes n; sont interprétés comme précédemment. Les coefficients \; représentent
Pélargissement par rapport a la taille originale de 'intervalle. Pour un intervalle [a;b], la nouvelle taille
sera de \;(b—a). Une valeur négative indique une réduction de 'intervalle et 1 représente la valeur neutre.
Les coefficients A; représentent le déplacement a droite de I'intervalle. Pour un intervalle [ay,; by,] modifié
selon \;, la nouvelle borne gauche vaudra a’/\q = ay, + Ai(bx, — ay;). Une valeur négative indique un
déplacement & gauche et 0 représente la valeur neutre. L’utilisation de la taille et de la position originales
des intervalles permet d’obtenir des opérateurs de mutation indépendants de I’échelle des valeurs des
données.

Les opérateurs génétiques. D’aprés une expérimentation non reportée ici, les plages intéressantes’
pour les différentes transformations sont les suivantes : [0.5; 1.5] pour \; et [—0.5;0.5] pour A;. Ces plages
de valeurs sont utilisées par l'opérateur de mutation et d’initialisation. Le croisement et la mutation
sont cohérents puisque ’application des génes se fait toujours sur une classe qui leur a été réservée
(le parameétre \; est toujours échangé avec un autre parameétre ); correspondant a la méme classe).
La fonction d’évaluation est du méme type que celle présentée auparavant (¢;). Les classifieurs sont
extraits de la population initiale, modifiés et la performance globale du nouveau jeu de régles représente
I’évaluation du génome.

6.1.3 Recombinaison de classifieurs (génome G3)

Bien que les deux génomes précédents déterminent de nouvelles populations d’individus, aucune
création de classifieurs n’a vraiment eu lieu, comme si 'on avait considéré que les populations apprises
contiennent déja la solution au probléme ou tout du moins une solution proche. L’opérateur de croisement
n’a, par exemple, pas été approfondi. Des classifieurs totalement différents peuvent pourtant étre produits
par recombinaison de deux classifieurs existants.

[typer | o [ B || - | types | i | Bi || -~ || typer | an | Br ]

FiG. 6.2 — Représentation du génome Gs.

Ici, chaque géne d’un individu représente une combinaison obtenue en en utilisant deux autres (voir
la figure 6.2). Les génes «; et [; représentent respectivement les index des deux classifieurs a recombiner,
en utilisant le méme principe que celui décrit pour le génome (. Les génes type; sont des entiers et
servent a encoder le type de recombinaison. La recombinaison de deux classifieurs complets est obtenue
en recombinant deux & deux chacun des intervalles composant ces classifieurs. La liste des recombinaisons
est présentée dans le tableau 6.1. La taille du génome peut étre quelconque.

Les opérateurs génétiques. L’opérateur de mutation est défini de la méme fagon qu’auparavant :
différents types de recombinaison et différents index pour les classifieurs sont essayés. Une mutation
spéciale permet d’inverser «; et (§; dans le génome. Aprés chaque croisement ou chaque mutation, les
bornes d’un intervalle [a; b] sont permutées si b < a. La fonction d’évaluation n’a pas été modifiée.

ICelles qui ont conduit & la meilleure généralisation sur I’ensemble de test.
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Type | Nom Commentaire

T1 Copie de Il Aucune modification

T2 Copie de IQ Aucune modification

T; Elongation & droite | Lintervalle devient [as; as]

Ty Recouvrement L’intervalle devient [a1; bz]

Ts Remplissage L’intervalle devient [by; az]

Ts Elongation & gauche | Liintervalle devient [b;; bs]

T7 OR [min(a1, az); max(b1, b2)] (dilatation de I1 par I, c’est-a-dire que I s’al-
longe jusqu’a couvrir I2)

Ty AND [min(b1, b2); max (a1, az)] (on ne conserve que la partie du chevauchement)

Tg Par contrainte I, s’allonge a gauche ou a droite jusqu’a la limite de I3, mais s’évide si I
chevauche déja I;. Post-condition : I; et Iz sont contigu. I; est l'intervalle
résultant

T10 Gauche Intervalle dont le centre est le plus & gauche

T11 Droite Intervalle dont le centre est le plus & droite

T12 MIN Intervalle le plus fin

T13 MAX Intervalle le plus large

T14 Fusion Intervalle dont le centre est celui de I; et le rayon celui de I3

TAB. 6.1 — Types d’intervalles qu’il est possible d’obtenir en recombinant deux intervalles I; = [a;;b1] et
IQ = [ag; bg]

6.1.4 Synthése

Nous avons vu trois génomes, G1, G2 et G3, qui permettent d’optimiser la base de régles de XCS-R
a Paide d’un algorithme génétique classique. Ces trois génomes correspondent chacun & des modifications
spécifiques de la base et peuvent étre appliqués séquentiellement : la base est d’abord réduite (G1), les
classifieurs sont ensuite transformés (G2) puis recombinés (G3). D’aprés les expérimentations que nous
présenterons dans le chapitre suivant, les génomes les plus intéressants concernant l’amélioration de la
performance des régles sont les génomes G; et Gs.

6.2 Etude d’une fonction d’appartenance

Il est généralement reconnu qu’un étre humain est plus a l’aise en présence de concepts simples que
complexes. La notion de complexité dans un systéme de classifieurs peut étre rattachée, toutes choses
égales, au nombre de régles ou a la taille des régles (au sens du nombre de conditions) contenues dans la
population. En effet, une bonne interprétation d’une population ne peut pas étre exprimée correctement
si cette population est trop large. Wilson a montré dans [Wilson, 2000b] que pour le probléme du Wis-
consin Breast Cancer Database (UCI 1998), prés de 4500 classifieurs ont été nécessaires pour obtenir une
performance satisfaisante au bout de 2.10% itérations d’exploration. Dans [Studley et Bull, 2005], 3200
classifieurs sont nécessaires pour atteindre une prédiction de récompense optimale dans le cas d’un pro-
bléme de type labyrinthe. Ce probléme est méme relevé par Wilson lui-méme dans [Wilson, 2000c|, p. 14 :
“Only a fraction of [the conditions of the classifiers] is directly interpretable. It would be desirable to find
algorithms for extracting all the classifiers = implications as rules of thumb and in other representations.”

Ce type de remarque nous a conduits & explorer une nouvelle forme de post-traitement, basée a la
fois sur la réduction a posteriori de la base de classifieurs, mais aussi sur la transformation de cette base
dans un autre formalisme, plus compréhensible. Parmi tous les formalismes disponibles, 'organisation
des données sous la forme d’arbres nous parait la plus pertinente. Cette section décrit une méthode de
réduction d’une base de classifieurs apprise par la découverte de niches puis 'extraction de relations entre
ces niches et leur représentation sous forme d’arbres. Le concept de niches, tel qu’il est décrit dans le
rapport [Butz et al., 2004], fait appel a la notion de modéles représentatifs d’un ensemble de classifieurs
codant pour la méme action. Par exemple, les classifieurs 011 : 01 et 001 : 01 peuvent étre représentés
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par le modeéle 0 1 : 01.

6.2.1 Le concept de niche et leur découverte

Dans XCS-R, une niche est définie & partir de la notion de schéma connue pour les AG depuis les
travaux publiés dans [Holland, 1975]. On entend par le terme niche, ’ensemble des classifieurs appartenant
a un modéle donné (par exemple, *0 x x01 : 01) comprenant les conditions et I’action du classifieur. Un
classifieur appartient & une niche s’il est au moins aussi spécifique que le modéle, les bits instanciés et
I’action devant étre identiques. Par exemple, les classifieurs #0##01 : 01 et #01001 : 01 appartienne &
la niche de modéle x0 * %01 : 01. On appelle instance I'un des classifieurs qui fait partie d’une niche.

L’étude des niches (et notamment de leur taille par rapport & un modéle) nécessite de faire 'inventaire
de la totalité des niches pour un probléme donné. Il a été montré dans [Butz et al., 2004] qu’il est plus facile
de déterminer les niches & partir de la spécification compléte d’un probléme, qu’a posteriori, c’est-a-dire
uniquement & partir d’'une population finale, ce que nous souhaitons faire ici puisqu’une telle spécification
n’est pas réalisable en télédétection.

Dans le cadre du probléme de la télédétection, nous devons commencer par redéfinir le concept de
niche dans le cadre de données réelles, puisqu’elles ne peuvent plus étre représentées par des chaines
binaires.

6.2.2 Définition d’une niche dans XCS-R

Dans l'algorithme XCS-R traditionnel, ’ensemble des niches permet de définir la solution la plus
générale & un probléme donné. Toute 'information doit pouvoir étre modélisée par les niches (par exemple,
pour le probléme du 11l-multiplexeur décrit dans [Butz et al., 2004], la solution est représentable par
exactement 32 niches) et aucune information supplémentaire ne doit étre stockée (pas de bits instanciés
inutilement). Cependant, il peut y avoir des recouvrements si la représentation de la solution I'implique.
Par exemple, dans le probléme cary,? les modeéles 000 * * : 0 et 00 % 0% : 0 se recouvrent.

Formellement, une niche est construite sur le modéle suivant :

M(1) M(2) ... M(n) : action (6.2)

ot chaque condition M (i) est un caractére de I’alphabet {0, 1, #} dans le cas d’une niche de séquences
binaires et un intervalle [M ()min; M (i)maz] de valeurs réelles dans notre cas.

Si la valeur de M (4)maz — M (i)min est faible, on est en présence d’une condition & spécificité élevée.
Dans le cas contraire, on est en présence d’une condition générique (correspondant au caractére joker
dans le formalisme original).

6.2.3 Définition de ’appartenance d’un classifieur & une niche

La fonction d’appartenance est définie par C' x M — {true, false}, ou C est 'espace des classifieurs
et M D’espace des niches. Pour qu’un classifieur appartienne & une niche, il faut qu’il soit aussi spécifique
que celle-ci. Si C(i) est la condition 4 du classifieur C et M (i) la condition ¢ du modéle M, la fonction
d’appartenance de C' & M est vraie lorsque les actions spécifiées sont identiques et que C; est inclus (non
strictement) dans M (i) pour tout .

Par exemple, si nous définissons un modeéle M par [2;4][7;9][1; 9] : 10, le classifieur Cy « [2;4][7;7][1;9] :
10 » appartient & M car il est plus spécifique sur la condition C4(2) et le classifieur Cy « [3;3][8; 8][5; 5] :
10 » appartient lui aussi & M car il est plus spécifique sur toutes les conditions. Par contre, le classifieur
C3 « [2;4][5;9][1;9] : 10 » n’appartient pas & M.

2Boolean Carry of size k. Ce probléme consiste & découvrir la retenue de la somme de deux séquences de k bits. Par
exemple, pour k = 3, z = 100 et y = 101, carg(100101) renvoie 1 (retenue sur 3 bits de 1001).
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6.2.4 Hypothéses de travail

Les niches et leurs relations (modéles de niches) ne peuvent pas étre déterminées lorsque ’on ne fait
aucune supposition a priori sur la structure interne des solutions du probléme posé, comme c’est le cas
en général dans le cadre de la classification hyperspectrale. Pour extraire les modéles de niches d’une
population de classifieurs apprise, nous avons émis les deux hypothéses suivantes :

Discrimination des classifieurs [H1]. Certains classifieurs dans la population P peuvent étre pris
pour modéle de niches et d’autres classifieurs de la méme population appartiennent & ces niches. Nous
avons donc deux sous-populations, Ppoder €t Peontent, formant une partition de P.

Critére de confiance [H2]. Il y a assez de classifieurs spécifiques dans la population et qui appar-
tiennent & ces niches pour mettre en valeur ces modéles. Si la fitness des niches est élevée, celles-ci sont
proches des modéles de niches optimaux.

Dans ce cas, la découverte des niches peut se faire en formant des couples de classifieurs (C, M)
dans lesquels M représenterait le modeéle et C' le classifieur qui appartiendrait au modéle. Il ne reste alors
plus qu’a comparer les classifieurs deux & deux pour découvrir les niches (hypothése H1). La confiance
des modéles ainsi obtenus est déduite du nombre de classifieurs appartenant a chaque niche. Une bonne
confiance dans le modéle final est obtenue lorsque I’hypothése H2 est vérifiée.

Examinons la viabilité de ces hypothéses. H1 se vérifie par la nature méme de XCS-R : le but
de l'algorithme est de découvrir une population comportant des niches optimales et dont le peuplement
par niche (nombre de représentants par niche) est maximal. Ainsi, la partition P.ynten: €st constituée
de classifieurs spécifiques créés par le Covering Operator. H2 est peut étre un peu forte. La proportion
de classifieurs spécifiques dans XCS-R est relativement faible puisqu’ils sont éliminés par ’'AG [Wilson,
1998]. Un certain nombre de classifieurs spécifiques peuvent cependant étre créés par le Covering Operator
ou I’AG en ajustant certains paramétres (par exemple, Og 4, doGeneralizationMutation, dontCareProb et
Osup, des paramétres classiques de XCS [Butz et Wilson, 2002]).

6.2.5 Découverte de niches a posteriori

Pour tester I'appartenance d’un classifieur & une niche représentée par un autre classifieur, nous
avons utilisé 'algorithme A7. La fonction BELONGSTO prend deux classifieurs C' et M en paramétre et
renvoie vrai si C est inclus dans M.

En ordonnant deux classifieurs, cette fonction définit sur une population compléte une relation d’ordre
partiel. Cette relation permet de retraduire graphiquement la population en un graphe acyclique (orienté,
sans circuit) G, dans lequel chaque sommet représente un classifieur. Les arcs de G, peuvent étre vus
comme définissant une relation entre un classifieur et sa niche. La niche la plus générale est donc celle
qui se trouve ordonnée avant toutes les autres, dans un sous-graphe connexe donné. Nous avons donc
développé une représentation graphique pour visualiser ces graphes. Un exemple d’un tel graphe est
représenté sur la figure 6.3. Chaque nceud fait référence & un classifieur de la population originale. Les
relations d’appartenance y sont représentées uniquement pour les classifieurs correspondant & la classe
eau : le graphe complet comprend neuf graphes connexes.

6.2.6 Reésultats obtenus

Nous pouvons constater que le graphe résultant est complexe & interpréter directement, mais déja
plus simple qu'un jeu de plusieurs milliers de classifieurs. Un autre test qui a été effectué consistait
a connaitre la fréquence des niches et la répartition des couples (classifieurs, modéles) au sein de la
population. Ces couples, calculés par la fonction BELONGST0, peuvent étre présentés sous la forme d’une
matrice d’adjacence binaire (voir la figure 6.4). Pour plus de clarté, un extrait est présenté sur la figure 6.5.
Chaque ligne et chaque colonne représente un classifieur. La population compléte (comprenant ici 2300
classifieurs) peut donc étre représentée sur la méme figure. Sur cette figure, un pixel situé sur la colonne
i et la ligne j représente le fait que le classifieur C; appartienne au modele M;. Le pixel est représenté
en blanc lorsque la relation est fausse et dans une couleur correspondant a la classe de I’exemple lorsque
la relation est vérifiée.
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ALGORITHME A7
RENVOIE L’APPARTENANCE D’UN CLASSIFIEUR A UN MODELE

~ PARAMETRES - C' est le classifieur a tester et M le modéle correspondant
~~ RESULTAT - vrai si I'appartenance est vérifiée, faux sinon

st C.action # M .action alors
Renvoyer faux
fin st
pour chaque condition C(i) de C et M(i) de M faire
st M (i) est une condition joker ou (M (i)maz — M (1)min) > seuil alors
Passer a la condition suivante
sinon
st C(i)'rnin < M(i)'rnin alors
Renvoyer faux
sinon
8t M (V) maz < C(1)maz alors
Renvoyer faux
sinon
Passer a la condition suivante
fin st
fin st
fin st
fin pour
S’il n’y a plus de conditions a tester, renvoyer vrai

Algorithme 7: Fonction BELONGSTO(C, M)
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Fi1G. 6.3 — Représentation des relations d’appartenance sous la forme de graphe.

Ce test nous a conduits & considérer les relations d’adjacences obtenues comme étant trés complexes
A interpréter humainement. De nombreux classifieurs se recouvrent partiellement et pour relier deux
classifieurs du graphe, il existe plusieurs chemins possibles. Un algorithme a alors été congu pour détecter
et éliminer les arcs supplémentaires du graphe G, c’est-a-dire les arcs inclus dans des chemins non directs.
L’algorithme A8 prend en paramétre deux nceuds A et B et renvoie vrai si les noeuds ne sont reliés que
par un seul chemin. L’algorithme A9 a alors été défini pour simplifier le graphe.

La figure 6.6 montre deux extraits simplifiés de la matrice d’adjacence présentée sur la figure 6.4.
Dans la figure 6.6, les sommets® des arbres représentent les modeéles de niches pour les classifieurs sym-
bolisés par les nceuds fils. La topologie de ces arbres est trés variable d’une classe a l'autre, depuis des
structures simples & deux nceuds jusqu’a des structures d’une centaine de nceuds. Les structures sont
tout a fait liées & la complexité réelle des données, ici des classes de végétation : les végétations qui sont
situées & la fois en bordure d’eau ou a plus haute altitude comme le juncus maritimus présentent les
structures les plus riches. Nous sommes allés jusqu’a I'étude détaillée de certains classifieurs pour mieux
comprendre 'apport des graphes produits. Etudions, par exemple, ceux d’identifiants 117, 438, 566 et
828. Leurs performances et leurs relations au sein de la niche sont représentées sur le graphe central de
la figure 6.6 et leurs parties <condition> sont représentées de maniére graphique sur la figure 6.7. Les
représentations montrent clairement que le classifieur 117 généralise les trois autres : ce classifieur est au
sommet de sa niche (figure 6.6) et deux de ses parties <condition> sont plus grandes et recouvrent les
conditions des autres classifieurs (les deux conditions sont représentées chacune sur un graphique de la
figure 6.7). Les performances observées sur la figure 6.6 confirment cela : la performance du classifieur
117 est en effet supérieure a celle des autres classifieurs (0.805 contre 0.799). Ces graphes ont plusieurs

3Un sommet est un noeud sans arcs incidents intérieurement.
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ALGORITHME A8
TESTE L’ABSENCE DE CHEMINS INUTILES DANS LE GRAPHE D’APPARTENANCE

~» PARAMETRES - G, est le graphe d’appartenance, A et B sont les deux nceuds a tester
~» RESULTAT - vrai si A et B ne sont reliés par aucun chemin inutile, faux sinon
~ Succ(G,X) est une fonction renvoyant le successeur du nceud X dans le graphe G

soit L ={}
pour chaque neud N de G, faire
st N = Succ(G,,A) et N # B alors
L:=LU{N}
fin st
fin pour
tant que |L| > 0 faire
Choisir un neud M dans L
L:=L\M
pour chaque neud N de G, faire
st N = Succ(G,,M ) alors
:=LU{N}
fin st
st N = B alors
Renvoyer faux
fin st
fin pour
fin tant que
S’il n’y a plus de neuds a tester, renvoyer vrai

Algorithme 8: Fonction NEIGHBOR(G,, A, B)

ALGORITHME A9
SIMPLIFIE UN GRAPHE D’APPARTENANCE

~ PARAMETRE - G, est le graphe d’appartenance
~» RESULTAT - le graphe simplifié

soit Gy, = G,
pour chaque neud Ny de Gy, faire
pour chaque neud Ny de Gy tel que No = Succ(Gy,N;) faire
st NEIGHBOR (Gy, N1, No) = faux alors
Supprimer de Gy l'arc entre Ny et Ny
fin st
fin pour
fin pour
Renvoyer G

Algorithme 9: Fonction SIMPLIFY (G, )
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F1G. 6.4 — Représentation des relations d’appartenance sous la forme de matrice.

intéréts : ils autorisent une interprétation plus aisée des relations entre les classifieurs et mettent en
valeur des classifieurs qui peuvent étre considérés comme des modéles de niches. Il est ensuite possible,
lorsque cela s’avére nécessaire, de se rapprocher d’avantage du modéle optimal par optimisation locale
des paramétres des meilleurs modeéles trouvés, par exemple en utilisant un AG classique (tuning). Si la
structure des données révéle une relation épistatique entre deux génes*, on peut noter que la représen-
tation hiérarchique exposée ici ne la mettra pas en évidence. En effet, pour un classifieur donné A, soit
les conditions correspondantes & N génes épistatiques sont ensembles plus larges ou plus étroites que
celles d’'un classifieur témoin B et dans ce cas les classifieurs A et B seront situés dans le méme graphe
d’appartenance. Soit les conditions correspondantes & ces N génes doivent évoluer indépendamment et
dans ce cas, les classifieurs correspondants seront séparés dans deux graphes différents. Il est possible
qu’une étude par géne et non plus par classifieur puisse résoudre ce probléme.

4L épistasie est observée lorsqu’un géne altére I’effet d’un autre.
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FiG. 6.5 — A gauche : extrait de la matrice d’adjacence. A droite : la saturation (couleur) de chaque
point a été fixée en fonction de leur qualité sur un jeu de test. Plus le point est sombre, plus le classifieur

correspondant est performant.
109 117
perf=0.804878 tp=2 perf=0.804878 tp=2
1785 566 828
perf=0.835366 tp=1 perf=0.798780 tp=1 perf=0.798780 tp=1
438
perf=0.798780 tp=1

1031
perf=0.792683 tp=1

1197
perf=0.798780 tp=1
959
perf=0.798780 tp=1
825
perf=0.798780 tp=1

231
perf=0.621951 tp=16
232 147 148
pert-0.798780 tp- 1 perf=0.609756 tp=14 perf=0.609756 tp=14
1855 218
perf=0.798780 tp=1 perf=0.597561 tp=12

Fia. 6.6 — Simplification du graphe d’appartenance en utilisant 1’algorithme A9 Chaque nceud indique
lidentifiant du classifieur, la qualité et le nombre de vrais positifs (TP rate). La relation indiquée par les
fleches est « ce modéle inclut ce classifieur ».

320
perf=0.798780 tp=1

6.2.7 Synthése

Cette étude présente une technique pour ordonner a posteriori les classifieurs d’un jeu de régles
appris. Cet ordonnancement a permis de tirer un certain nombre de conclusions sur la performance des
modeéles par rapport & une population compléte et offre la possibilité de visualiser et d’interpréter la
hiérarchie des modéles et des classifieurs par rapport & la réalité du terrain.

Cependant, une partie des résultats obtenus n’a pas pu étre exploitée directement. Il s’agit des clas-
sifieurs orphelins ou bi-connezxes. Les classifieurs orphelins sont des nceuds de graphe de degrés intérieur
et extérieur nuls. La bi-connexité dénote deux classifieurs dont 1'un est & la fois modéle et instance de
I’autre : dans la grande majorité des cas, ces classifieurs dégénérés sont deux classifieurs identiques obte-
nus tardivement par réplication génétique et qui n’ont pas eu le temps d’évoluer ou de deux classifieurs
agés qui ont évolué séparément mais qui ont finalement donné lieu & des génotypes similaires sous la
pression génétique.
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FiG. 6.7 — Etude comparée de parties <condition>. Le graphique de gauche (respectivement de droite)
montre les premiéres (respectivement les secondes) conditions de quatre classifieurs différents. Les marques
noires représentent les centres des intervalles.

Concernant les niches, malheureusement, peu de suppositions peuvent étre faites a leur égard. Si
elles présentent une performance élevée sur une base de test (en utilisant, par exemple, les mesures de
qualité TPR® ou TNRS), elles ont de fortes chances d’étre des modéles. Cependant, aucune information
dans la population ne permet réellement, de déduire le fait qu’elles le sont vraiment ou non. On ne peut
déduire leur capacité de généralisation du nombre d’exemples validés par ces classifieurs puisque 1’on ne
posséde aucune information sur le degré de représentativité de ces exemples par rapport au probléme
posé. Par exemple, si un classifieur orphelin active de nombreux échantillons, cela ne suffira pas & en
faire un classifieur générique : les propriétés dérivées a partir de I’étude d’exemples qui sont activés par
un classifieur dont la capacité de généralisation n’est pas connue ne peuvent pas servir 4 argumenter sur
cette capacité de généralisation elle-méme.

6.3 Extraction d’un arbre de décision

L’étude précédente a démontré la pertinence d’'une optimisation intervenant en aval d’un appren-
tissage de XCS-R.. Les principaux avantages en sont le gain de temps par rapport a une optimisation
génétique des classifieurs, une simplification de la base des classifieurs en terme de taille de population
et de représentation, mais aussi le fait que ’adaptation de ce type de post-traitements & d’autres sys-
témes de classifieurs s’effectue sans difficultés. Cependant, une critique forte que 1’on peut adresser a
cette étude concerne la hiérarchisation du jeu de régles sous la forme de relations modéle-instance : en
définitive, pour chaque arbre connexe, seul le modéle inscrit au sommet est conservé et se substitue a
I’ensemble des classifieurs du reste de 'arbre. La taille de la population est certes réduite mais on perd
beaucoup d’informations apportées par les classifieurs. Notamment leur position dans la hiérarchie ainsi
que la répartition des instances dans ’espace de définition du modéle : en effet, on pourrait tirer parti
de la structure du sous-modeéle qu’ils engendrent. De plus, les classifieurs orphelins ne sont pas exploités
correctement puisque, malgré le fait qu’ils sont relativement nombreux (environ 90% des classifieurs selon
nos expérimentations), on ne peut que les supprimer ou les inclure a 'identique (sans rectification) dans
les graphes.

Nous avons donc tenu & proposer une autre orientation dans laquelle la totalité des classifieurs
pouvait étre a priori utilisés comme nceud d’un arbre (ce type de représentation étant considéré au
fil de nos travaux comme tout & fait convenable et conviviale) et dont la profondeur au sein de cette
hiérarchie dépendait directement de la performance de ces classifieurs sur une base d’exemples. Ce type
de représentation fait appel & la notion de gain de performance qu’apporterait la classification d’un certain

5True Positive Rate.
STrue Negative Rate.
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nombre d’exemples par un classifieur donné plutét qu’un autre. Pour simplifier la base de classifieurs,
nous souhaitions aussi détecter et éliminer les classifieurs qui ne sont pas discriminants. Ces principes
se retrouvent justement dans certains algorithmes inductifs, qui fonctionnent a partir d’une mesure de
gain et qui intégrent un processus d’élagage. Une hybridation entre le systéme de classifieurs XCS-R et
Palgorithme C4.5 [Quinlan, 1993] a alors été proposée dans cette optique. L’algorithme congu, nommé
XCS5, fonctionne de la méme fagon que C4.5, sauf que les tests étiquetant chacun des nceuds de ’arbre
ne sont plus déterminés au cours de I’apprentissage mais sont représentés par des classifieurs piochés au
sein d’une population apprise. Le formalisme des classifieurs autorise déja leur utilisation comme test
binaire, avec une partie <condition> déclenchant I’action correspondante (branche “OUT”) et la négation
de la condition déclenchant I'autre branche (branche “NON”). Le role de XCS5 est donc de sélectionner
les classifieurs discriminant la base d’exemples de la maniére la plus efficace (au sens d’une mesure de
gain d’information) et de les placer au sommet de ’arbre de décision.

Un arbre produit par XCS5 est un arbre de type inductif, dont un nceud représente un test 7T,
une branche représente un résultat de ce test et une feuille représente I'une des classes des exemples
a apprendre. Soient P = {Cy,...,C;,...,Cp}, un jeu de régles obtenu a partir de XCS-R ou d’un
quelconque systéme de classifieurs qui a convergé et C;, I'un des classifieurs de P qui posséde la forme
suivante :

Ci = [Ci,la N 7Ci,n] A (63)
i Bils oy [in; Binl]] - A (6.4)

Le type du test T est alors de I’'un des quatre types présentés dans le tableau 6.2.

Type Description

Type 1 | L’exemple est comparé au classifieur complet C; (activation ou non).

Type 2 | La valeur de radiance correspondant & la bande j de I’exemple est comparée a la
condition ¢; ; du classifieur C; avec j € [1;n] (activation ou non).

Type 3 | Identique au type 2, mais le résultat du test est ternaire (en-dessous de ¢; ;, dans
¢i,j, au-dessus de ¢; ;).

Type 4 | La valeur de radiance correspondant & la bande j de ’échantillon est comparée a
la borne «; ; ou f;,, de la condition ¢; ; du classifieur C; (inférieure, supérieure).

TAB. 6.2 — Tests de ’algorithme XCS5.

Le fonctionnement de I’algorithme XCS5 fait appel a certains fondements de 1’algorithme C4.5, que
nous rappelons ici. Soit £/ un ensemble d’exemples associant un pixel & k € K la classe de ce pixel. Si F
est partitionné en k = | K| ensembles distincts F, ..., Ej, alors l'intérét apporté par le partitionnement
pour identifier la classe d’un exemple de F est Info(E) = I(P), ou P est la distribution de probabilité de
la partition (E1, ..., Ey) et I(P) l'entropie de P [Quinlan, 1993] :

n
I(P) == pilog(p:) (6.5)
i=1
ou :
|Er| | B IEkI)
P:(—,—,...,— (6.6)
|E| " |E| |E]
Si E est partitionné en n sous-ensembles disjoints E1, ..., E, sur la base d’un test donné T, I'informa-

tion apportée par le test pour discriminer les exemples selon leurs classes est la moyenne des informations
Info(E;), pondérées par la proportion de F; par rapport a E :
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n

Info(T, E) Z

E;) (6.7)

Enfin, le gain d’information fournit par I’ apphcatlon du test T est calculé par :

Gain(T, E) = Info(E) — Info(T, E) (6.8)

Cette notion de gain est utilisée ensuite pour ordonner les tests selon leur pertinence. On affecte
ensuite & un neceud le test avec le meilleur gain parmi l’ensemble des tests non encore considérés dans
la branche située entre la racine de l’arbre et le nceud courant. L’algorithme A10 décrit 1’élaboration
compléte de I'arbre de décision.

La notion de gain définie ci-dessus tendait a favoriser les tests binaires plutét que ternaires. Le test
de type 3 partitionne un ensemble en trois sous-ensembles dont 'un a une taille significativement plus
faible que les deux autres. Quinlan a suggéré I'utilisation d’une mesure, utilisée dans C4.5, dont nous
nous sommes inspirés dans XCS5. Le calcul du gain a été remplacé par la fonction GainRatio définie
par :

Gain(T, E)
GalnRatlo(T E) m (69)
ou :
. [Er| B B
SplitInfo(T, E) =1 < (6.10)
Bl 1Bl (R

Une différence, par rapport & C4.5, doit étre notée. Ici, les valeurs des tests ne sont connues que
pendant ’apprentissage, contrairement & C4.5 ot les valeurs possibles pour chaque attribut sont connues
avant l'apprentissage. Il peut arriver qu'un test ne renvoie qu’une seule valeur, méme si les exemples
d’apprentissage sont nombreux. Il n’est alors pas acceptable de renvoyer un arbre ne tenant pas compte des
autres valeurs possibles du test. L’algorithme a été adapté en construisant des branches supplémentaires,
pointant vers des feuilles dont la valeur correspond & la classe la plus fréquente observée sur le jeu
d’exemples utilisés pour construire le nceud parent, en supposant que la proportion des classes intervenant
dans cette partie de I'arbre est assez représentative des différents tests traversés.

Généralement, les arbres produits sont trés simples, et puisqu’ils reprennent les régles obtenues avec
XCS-R, ils ont une bonne capacité de généralisation. Il faut cependant noter que leurs performances
sont légérement inférieures & celles obtenues par les bases non post-traitées de XCS-R car de nombreux
classifieurs spécifiques qui améliorent la qualité sont ici élagués. Néanmoins, les performances restent
supérieures a celles de C4.5 dans la plupart des cas.

6.4 Conclusion sur les post-traitements

Nous venons de voir, dans ce chapitre, trois types de post-traitements que nous avons développés
et qui s’appliquent & des bases de régles produites par XCS-R. XCS-R a une propension & produire
des bases de régles importantes donc difficiles a interpréter. Nous avons alors cong¢u un ensemble de
post-traitements qui peuvent se révéler efficaces dans 1’élaboration d’une représentation plus aboutie :
une série d’algorithmes génétiques permet de simplifier directement la base de régles, I’algorithme XCS5
permet d’en extraire un arbre de décision et ’étude d’une fonction d’appartenance permet la hiérarchi-
sation des régles entre elles. Pour I'utilisateur, le choix de 'un ou l'autre de ces algorithmes dépend de la
représentation qui lui parait la plus adaptée pour le probléme & résoudre. Le post-traitement génétique,
comme les autres algorithmes, permet d’améliorer la lisibilité du jeu de régles, mais sans modifier sa struc-
ture. L’étude d’une fonction d’appartenance et I’algorithme XCS5 proposent soit une hiérarchisation des
régles, soit la construction d’un arbre de décision, qui sont des représentations plus faciles & comprendre.
Ces différents algorithmes, ainsi que ceux présentés dans le chapitre précédent, sont tous illustrés sur des
exemples choisis pour leur pertinence, dans le prochain chapitre.
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ALGORITHME A10
EXTRACTION D’UN ARBRE DE DECISION DEPUIS UNE POPULATION DE CLASSIFIEURS

~ PARAMETRES - F est I'ensemble non vide des exemples d'apprentissage, F. est 'ensemble des
exemples de test pour I'élagage, R est la population de régles obtenue avec XCS-R et 7 est un type
de test parmi ceux du tableau 6.2.

~» RESULTAT - un arbre de décision

~~ EU est 'ensemble des classes de 'ensemble des exemples de E.

~ Q(F) renvoie le nombre d’éléments de I'ensemble E.

~~ TERMINAL(F) renvoie une feuille dont la valeur est la classe la plus fréquente dans I'ensemble
des exemples de E.

~» ENRACINE(A,t,Ay) ajoute un noeud fils & la racine de I'arbre A dont la valeur est Ay et le label de
I'arc entre la racine et le nouveau noceud est ¢.

~ ELAGUE(A) élague I'arbre en remplagant tous les sous-arbres, dont I'erreur estimée sur le jeu de
test E. est supérieure a un seuil fixé par I'utilisateur, par une feuille correspondant a la valeur de la
classe la plus fréquente du sous-arbre.

si Q(EC) = 1 ou Q(R) = 0 alors
Renvoyer TERMINAL(E)
fin st
~ La population de régles R est vue comme un ensemble de tests R, selon 7.
soit T = {T; | GAIN(T}, E) = max GAIN(T},, E) V T, € R, }
soit Vp = {t;|i =1,2,...,n} les valeurs des tests T
soit {E;|i =1,2,...,n} les sous-ensembles correspondants, partitionnés selon les valeurs Vi du test
T appliqué sur les exemples de E.
soit A une feuille labellisée par T
pour i de 1 an faire
st Q(E;) = 0 alors
A; = TERMINAL(E)
sinon si Q(E;) = Q(E) alors
~ FE est un jeu d’exemples dont les classes sont éventuellement différentes, mais renvoyant
tous la méme valeur pour le test T
; = TERMINAL(E)
sinon
A; = XCS5(R\{T}, E;, E., 7)
fin st
A = ENRACINE(A,t;,A;)
fin pour
Renvoyer ELAGUE(A)

Algorithme 10: Fonction XCS5(R, E, E., 7)
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6.5 Synthése des algorithmes proposés

Nous présentons dans le tableau 6.3 la liste des algorithmes que nous avons proposés dans les deux
chapitres précédents, avec quelques informations synthétiques les concernant. Ces informations peuvent
servir & comprendre les différences entre chacun de ces algorithmes et & en faciliter le choix par un
utilisateur intéressé.

Le nombre important d’algorithmes provient surtout du fait qu’il y a de nombreux types de problémes
différents en classification. Le choix de ’algorithme & utiliser est donc, dans la plupart des cas, directement
déterminé par le type des données brutes a traiter et de la question de savoir si une donnée brute peut
étre labellisée ou non par plusieurs classes. Les données entiéres ou binaires font appel & un type de
classification dur ou doux et les données réelles & un type flou ou par intervalles flous. La représentation des
régles intervient ensuite dans le choix de ’algorithme. D’aprés nos expérimentations, nous avons constaté
que les représentations arborescentes, indiquées par les colonnes (1) et (2), sont plus simples & interpréter
et & visualiser mais nécessitent un paramétrage plus complexe et sont parfois moins performantes que les
représentations plates. La colonne (4) précise la représentation interne des régles (individus génétiques) :
I’approche de Pittsburgh réunit plusieurs régles par individu tandis que I’approche de Michigan n’en réunit
qu’une seule. La colonne (5) indique le type de résultat final obtenu pour chaque algorithme. Un résultat
formé d’une population de régles pour toutes les classes est plus complexe & représenter (graphiquement
ou non) et a interpréter (par un autre algorithme ou par un expert humain). La colonne (6) liste les
paramétres les plus importants qui doivent étre maitrisés par 1’'utilisateur pour obtenir des résultats
intéressants, en plus des paramétres génétiques classiques qui sont communs & tous les algorithmes.
Enfin, la colonne (7) compare de maniére approximative la durée d’exécution de ces algorithmes.



voir la section
4.4)

(1) Structure
(vo

(2) Format

(3) Type de
probléme de
classification
(voir la section
4.2)

4) Approche
(voir la section
2.4)

(5) Base de régles

(6) Paramétrage

(7) Durée CPU (3
GHz)

ICU (p. 77) Plate Intervalles réels Doux Michigan Une régle par classe | Taille des régles Moyenne (30 min)
XCS-R (p. 83) Plate Intervalles réels Doux Michigan Une population | Taille de la popula- | Longue (1h)
pour  toutes les tion
classes
ICUX (p. 86) Plate Intervalles réels A intervalles flous Pittsburgh Une régle pour | Taille des régles Longue (1h)
toutes les classes
ProgGen (p. 93) Arborescente Expression arbores- Flou Michigan Une régle par classe | Taille des arbres, | Longue (2h)
cente probabilités par
opérateurs
GramGen (p. 92) Arborescente Expression arbores- Flou Michigan Une régle par classe | Grammaire Longue (4h)
cente
Post-traitements Plate Intervalles réels Doux Michigan Une population Le paramétrage de Courte (10 min)
génétiques (p. 105) pour toutes les XCS-R
classes
XCS5 (p. 116) Arborescente Arbre de décision Dur Michigan Une régle pour | Le paramétrage de | Courte (5 min)

toutes les classes

XCS-R

TAB

. 6.3 — Synthése des algorithmes proposés.
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Chapitre 7

Expérimentations et validations

7.1 Introduction

En télédétection, la validation des résultats fournis par les algorithmes est une étape essentielle : elle
permet de confronter ces résultats avec les mesures au sol et éprouve les algorithmes avec des données
réelles. Nous avons effectué de nombreuses expérimentations avec les algorithmes présentés dans les
chapitres précédents. Pour ce chapitre, nous avons sélectionné celles qui illustrent au mieux le choix
de tel algorithme plutdt qu’un autre, ainsi que celles qui sont les plus pertinentes pour chacune des
représentations développées dans ce mémoire.

La visualisation de ces objets n’étant pas triviale, nous avons introduit plusieurs représentations
graphiques permettant de faire le lien entre échantillons bruts, échantillons experts et bases de régles.
Nous les présenterons en premier lieu, dans la section 7.2.

Les études de cas que nous exposons ensuite seront regroupées par type de probléme de classification.
Dans la section 7.3, des classifications de type hard et soft & partir de classifieurs a structure plate sont
réalisées a l'aide des algorithmes ICU et XCS-R.. En utilisant 1'une des bases de régles obtenues avec
XCS-R, nous essaierons de démontrer les avantages a utiliser un post-traitement génétique afin de réduire
la taille de la base sans décroitre la qualité de classification. Ensuite, la partie suivante sera consacrée
a la classification de type floue a partir de classifieurs & structure arborescente, mettant en ceuvre les
algorithmes ProgGen et GramGen.

Le post-traitement génétique n’est pas le seul moyen de rendre une base de régles plus performante.
L’optimisation par tuning des paramétres de XCS-R, dans la section 7.4, étudie I'influence du nombre
de générations, de la taille du jeu de régles et de la spécificité des classifieurs de XCS-R par rapport au
temps d’apprentissage, a la qualité du jeu de régles généré ou aux taux de faux positifs et faux négatifs.

La section 7.5 est réservée & la comparaison des algorithmes développés dans le cadre de cette thése
a d’autres algorithmes connus pour étre robustes en classification. Notamment 1’algorithme d’extraction
d’un arbre de décision par XCS5 est comparé & C4.5 et Palgorithme de classification floue ICUX et
comparé i une approche & base de réseaux de neurones et de machines a vecteurs supports.

Tous ces algorithmes produisent un ensemble de résultats assez conséquent. A titre de conclusion, la
derniére section propose une technique basée sur un vote consensuel qui permet de combiner les résultats
obtenus par les algorithmes que nous venons de citer. Le concept général est présenté, suivi d’un exemple
combinant les résultats de huit algorithmes, dont deux non supervisés, a partir d’'une image traitée dans
le cadre du projet TIDE.

7.2 Visualisation des classifieurs

Malgré leur simplicité, les classifieurs restent tout de méme des objets difficiles & appréhender, méme
pour un expert. De toutes les représentations possibles, la possibilité de visualiser directement ces classi-
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fieurs représente sans doute la meilleure méthode de validation possible pour un étre humain. Nous avons
donc développé une série de trois méthodes de wvisualisation scientifique, procurant & l’utilisateur une
description abstraite des régles de classification. Cette description peut étre comparée aux données afin
d’en tirer des conclusions intéressantes pour le raffinement des régles ou 'optimisation de 'apprentissage.
Enfin, elle permet de rendre les classifieurs plus lisibles et contribue & leur compréhensibilité.

7.2.1 Analyse par spectrogramme

La création des individus génétiques est une étape difficile. Des techniques fiables sont nécessaires,
au sein de 'opérateur d’initialisation, pour ne pas créer une population trop éloignée de la solution a
trouver. Le spectrogramme est un outil que nous avons mis au point afin d’avoir une pré-analyse des
données spectrales pour ’apprentissage. Il indique pour une classe et un attribut donné la répartition
des valeurs de l'attribut pour les échantillons appartenant & cette classe. Les étapes de la création du
spectrogramme sont les suivantes :
— pour chaque classe k donnée, déterminer I’ensemble E}, des échantillons bruts étiquetés de la classe
k par l'expert,
— pour chaque échantillon e ; € Ej comprenant n attributs { ax:(1), ..., ag:(j), ---, ax:(n) },
assombrir les pixels de coordonnées (j; ay i(j)) pour j € [1;n].

Fiag. 7.1 — Spectrogramme d’un complexe sportif de Strasbourg (Stade Vauban) capturé par SPOT (3

Classes
canaux).

[—» Attribut 3
> Attribut 2
[ Attribut 1

Valeurs de réflectance

Les figures 7.1 et 7.2 présentent de tels spectrogrammes. Chaque colonne, séparée par une bordure
noire, correspond & une classe, identifiée par la couleur de la légende experte et par un numéro. Ces
colonnes sont elles-mémes séparées en sous-colonnes, pour chacun des attributs correspondant. Pour les
échantillons représentant des pixels spectraux, le spectrogramme d’une classe peut étre vu comme les
dessins successifs au crayon des spectres de chacun de ces pixels, les valeurs sombres correspondant donc
aux valeurs les plus fréquentes. Le degré d’assombrissement est normalisé de telle sorte que le contraste
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Valeurs de réflectance

Classes

F1G. 7.2 — Spectrogramme de la zone de San Felice (Venise) capturée par ROSIS (80 canaux). Les deux
premiéres classes sont des classes de végétation, les trois derniéres sont des classes d’eau.

soit maximal sur tout le spectrogramme. Les points situés en bas correspondent & des valeurs d’attributs
(radiances) faibles, les points du haut correspondent & des valeurs élevées.

Le spectrogramme permet d’apporter une réponse aux points suivants :

— il permet d’analyser la qualité de ’expertise et des données : les classes bruitées y apparaissent
clairement (par exemple, la colonne 10 de la figure 7.1 représentant le béton apparait plus diluée)
ainsi que celles qui sont trés corrélées (ainsi les colonnes 3, 4 et 5 de la figure 7.2),

— il autorise I'approximation de la répartition statistique des valeurs pour chaque classe, ce qui permet
d’en tirer des conclusions utiles pour certains paramétres génétiques : par exemple, une répartition
étroite invite a diminuer la fréquence des mutations et a consolider le seuil de convergence de
I’algorithme car 'initialisation des individus sera proche de la solution & trouver,

— enfin, la validation de la représentation des régles est facilitée puisque I'on peut comparer d’une
part, les proportions des valeurs de radiances des spectres des données de test et d’autre part, les
positions correspondantes des contraintes spectrales des régles.

Sur la figure 7.1, nous pouvons voir les spectres les plus fréquents de onze classes, observés par le
capteur SPOT. D’une maniére générale, un ensemble de pixels noirs correspond & un spectre trés ciblé
(comme l'eau de la colonne n°11) et des trainées en gris clair correspondent a une variabilité spectrale plus
importante (comme l'ombre de la colonne n°5, classe souvent confondue avec ’eau). Les spectres diffus
peuvent correspondre & des classes bruitées ou bien & des classes composites comme les classes d’ombres
qui recouvrent plusieurs régions aux spectres variés. De plus, une méme bande n’offre pas forcément la
méme qualité selon la classe observée : sur la figure 7.2, 'une des bandes présente un artefact prononcé
pour la classe n°1, largement atténué pour la classe n°5. Concernant la représentation des régles et leur
validation, les spectres diffus doivent conduire les régles a généraliser (caractére joker, intervalles plus
larges, ...). Quant aux spectres présentant des altérations, ils doivent conduire la régle a se complexifier
(ajout de disjonctions d’intervalles, profondeur des arbres plus élevée, ...). Examinons plus précisément
les colonnes n°5 et n°11 de la figure 7.1. Voici les régles associées, découvertes par ICU :

— Colonne n°5 (ombre) : [6;64] [3;21] [11:42] (évaluation : 95.38%)

— Colonne n°11 (eau) : [6;38] [0;27] [1;15] (évaluation : 95.58%)

D’apreés le spectrogramme, on remarque que pour 1’eau la quasi-totalité des pixels des deux derniéres
bandes ont une valeur bien précise, alors que ce n’est pas le cas pour 'ombre. Ceci est trés fortement
visible dans les régles obtenues : I'intervalle de la derniére bande pour 'ombre est deux fois plus grand
que celui de I'eau.

Le spectrogramme est toujours le méme pour des couples d’échantillons bruts et experts donnés. Peu
affecté par la taille des données (nombre d’échantillons et nombre de bandes spectrales), il se calcule trés
rapidement (moins d’une seconde). Puisqu’il donne une idée générale des régles que ’on va obtenir, nous
I’avons utilisé pour valider les régles produites, en tant qu’indicateur pour les phases de pré-traitement
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des données et comme composante de 'opérateur d’initialisation de ICU (voir la section 5.2.1.3).

7.2.2 Visualisation de la base de classifieurs

Pour les représentations a base de contraintes spectrales modélisées sous forme d’intervalles (ICU et
XCS-R), nous avons développé I’algorithme de visualisation RuleView. Celui-ci fonctionne de la fagon
suivante :

1113604427

1111900945 =

e L
1110707470 . | ] i

1109513904 | .1 | T - |.P -

1102320518 |

Valeurs de réflectance

1107127042
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1102546614
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1095192282
1092002206
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FiGg. 7.3 — L’algorithme de visualisation RuleView appliqué sur la base de régles de XCS-R pour une
image de QuickBird (4 canaux). Les noms des classes sont indiqués en abscisse.

— les régles sont divisées en plusieurs groupes, selon leur partie <action> (ici, il s’agit bien évidem-
ment de la classe pour laquelle chaque classifieur travaille),

— les régles de chaque groupe sont alors découpées selon leurs différentes parties <condition> et
chacune de ces conditions est affichée & un endroit bien précis du diagramme. Par exemple, sur
la figure 7.3, la condition n°1 des régles s’activant pour la classe n°2 est affichée dans la colonne
nommeée « b1l » de ’ensemble « class 2 »,

— les conditions sont affichées en utilisant les bornes des intervalles qu’elles contiennent : un intervalle
[a; b] sera affiché par une ligne verticale depuis 1’ordonnée a jusqu’a ’ordonnée b,

— les conditions concernant les mémes attributs mais appartenant a des classifieurs différents sont
présentées ensembles, mais avec des abscisses légérement décalées de telle sorte que tout le jeu de
régles puisse étre virtuellement présenté sur la méme image.

— ces conditions peuvent étre triées par un critére au choix de 'utilisateur, par exemple la qualité
des classifieurs (comme sur la figure 7.3) ou leur spécificité.
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F1G. 7.4 — Spectres des échantillons de test pour la classe 4 (avec le capteur QuickBird), pour comparaison
(en abscisse les canaux spectraux, en ordonnée les valeurs de radiance).

L’algorithme affiche uniquement les régles avec une qualité dépassant un certain seuil. Cette qualité
est calculée d’apreés les paramétres des régles (par exemple, pour XCS-R, nous utilisons la fitness F et
la prédiction de gratification p). Le seuil est défini par 'utilisateur selon qu’il souhaite visualiser le jeu
de régles en entier ou uniquement les meilleures régles.

La figure 7.3 présente le résultat de l’algorithme pour un jeu de 6000 régles créées par XCS-R. Les
intervalles imprimés par les régles doivent correspondre aux spectres des classes, ce qui permet de controler
visuellement la base de régles, et de la comparer aux spectres réels. En effet, on peut remarquer que
I’ensemble des spectres des échantillons de test (figure 7.4) ont une forte corrélation avec la visualisation
du jeu de régles pour la classe 4. De plus, le regroupement des attributs par classe permet de donner
une idée, pour chacun d’eux, de la proportion de régles spécifiques (matérialisées par un point ou un
trait trés court) par rapport aux régles qui ont été généralisées (matérialisées par un trait plus large).
On peut remarquer que les conditions des régles ne sont pas toutes identiques : chaque régle modélise un
sous-ensemble d’échantillons, I’essentiel étant que le jeu de régles complet soit fiable. Il faut néanmoins
avoir une idée de ’échelle des données : par exemple, les valeurs de QuickBird sont définies sur 32 bits :
I’espace de définition des données a une taille de 10'° donc chaque pixel du diagramme représente 50000
unités. Nous avons, dans certains cas, été contraints de zoomer sur le diagramme pour étudier les attributs
séparément.

7.2.3 Analyse par confrontation

Alors que le spectrogramme affiche les relations entre les classes de 'expert et les spectres des
échantillons bruts, que l’algorithme RuleView affiche les relations entre les classes de l'expert et le
contenu des régles, les relations entre les échantillons bruts et le contenu des régles sont affichées a ’aide
d’un troisiéme type de graphe, le cover-graph. Ce type de graphe est surtout indiqué pour les données
hyperspectrales, car il apporte une vue globale sur un ensemble vaste de canaux. Il permet de valider les
régles séparément ou simultanément, en les comparant au spectrogramme.

La partie gauche de la figure 7.5 montre la représentation d’une régle de ICU pour une classe de
végétation avec le spectrogramme associé a ces données. La partie droite de la figure présente le cover-
graph correspondant : la courbe inférieure représente les bornes min des conditions et la courbe supérieure
représente leurs bornes maz. Cette visualisation permet d’étudier les conditions des régles une & une, et
classe par classe. En comparant le spectrogramme et le cover-graph de cet exemple, on peut noter que
lartefact des canaux 51 & 54 de ROSIS se répercute sur la régle car il est intégré a tous les échantillons.
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Fia. 7.5 — Comparaison entre la description textuelle d’une régle de ICU, le spectrogramme de la classe
correspondante et le cover-graph de la régle (capteur ROSIS).

7.3 Etudes de cas

7.3.1 Classifications de type hard et soft

L’étude présentée dans cette partie a été menée en utilisant les données acquises durant la campagne
de Septembre 2002, pour le projet TIDE [TIDE, 2005]. La figure 7.6(a) présente I’extrait choisi de San
Felice (lagune de Venise), capturé par CASI (Compact Airborn Spectrographic Imager, 288 canaux). Il
a une taille de 142x99 pixels, une résolution spectrale de 16 bits par pixels et une résolution spatiale
de 1.3m. Ces données ont été choisies pour éprouver la capacité de généralisation des algorithmes, car
les validations terrain ne sont pas nombreuses dans cette région. Les données contenaient beaucoup de
mizels, nous les avons donc regroupées en six classes virtuelles, c’est-a-dire en compositions de spectres
purs (voir la figure 7.6(b)). Nous avons retenu ce regroupement car ces classes ont une fréquence assez
élevée sur le terrain. Les données expertes représentent 1540 points dont la moitié a été consacrée a
I’apprentissage et ’autre moitié a la validation.

Pastille Classe Acronyme
Spartina Maritima > 80% SPA2
Spartina Maritima 60% + Soil (20-30%) SPAl
Limonium 60% + Soil 10% + Spa/Sar 10% LIM1

B ]

Limonium 50% + Sarcocornia 50% LISR
Sarcocornia Fruticosa > 80% SAR2
Eau WAT

FiG. 7.6 — Sur la figure de gauche (a) : image hyperspectrale de CASI et les points utilisés pour le
ground-truthing. Sur la figure de droite (b) : légende des 6 classes étudiées (San Felice).

7.3.1.1 Classification avec ICU

Les résultats pour ICU sont présentés sur la figure 7.7. Les principaux paramétres que nous avons
utilisés sont décrits dans le tableau 7.1. De nombreux tests ont été effectués pour optimiser les principaux
parameétres génétiques (la taille du jeu de régles, le critére d’arrét, les pourcentages de croisement et
de mutation, les opérateurs de sélection et de remplacement ainsi que le paramétre d’élitisme). Dans
certains cas, des boucles de tests imbriquées ont été mises en place pour sélectionner les meilleures
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valeurs parmi des jeux comportant de trois a six valeurs considérées comme acceptables pour chacun des
parameétres, en utilisant les mesures de qualité et de précision définies dans la section 4.6.1.1. Ces valeurs
étant différentes pour chaque image analysée, nous pensons qu’une justification expérimentale plutdt que
formelle du choix des paramétres peut étre admise. Ces paramétres pourront étre réutilisés sur d’autres
images a caractéristiques semblables (méme résolution spatiale et spectrale, contexte rural, ...) mais les
boucles devront sans doute étre ré-employées sur des images avec des caractéristiques différentes.

Paramétre Valeur
Taille du jeu de régles |P| = 300 individus
Critére d’arrét 3000 générations
Peross 0.70

Prut 0.15
Pmut,band 0.35
Pmut,interval 0.20
Pmut,border 0.45
Opérateur de sélection Ranking direct
Opérateur de remplacement Ranking direct
Nombre d’enfants par génération |P|
Elitisme 1% (fort)
Durée du traitement 8 min (CPU de 2.5 GHz)

TAB. 7.1 — Paramétres utilisés pour ICU sur CASI, voir la section 5.2.1.

Nombre de pixels selon I'expert

SAR2[ LISR [SPA2[SPAL]LIM1] Oy
<. [SAR2[[222 | © 0 0 5 | 98%
sz |[LSR| 59 [[149 | © 0 [ 21 [65%
MARYVIED 0 [382 ] 162 8 [69%
c8|sPAl| 0 0 0 28 0 |100%
SaelLMi] o 0 3 33 [ 468 | 93%
Z 7 | Quens | 79% |100% | 99% | 13% | 93%

FiG. 7.7 — Image classifiée et matrice de confusion pour ICU.

Nous devons signaler que nous n’avons pas utilisé I’eau en apprentissage (la zone sombre au sud).
Pour ces données, I’eau peut étre discriminée rapidement en utilisant des outils statistiques ou méme
une approche non supervisée, et de toute facon n’intéressait pas ’expert sur cette image. SPA2 est une
classe pure de Spartina Maritima, une plante marine longue, souple et trés fine, dont ’aspect laisse
apercevoir le sol nu ou leau, ce qui en fait une classe difficile & traiter (voir la figure 7.8). SPA1 est
une classe contenant de la Spartina en quantité beaucoup plus faible. Globalement, ’algorithme ICU
est complétement conforme & ’expertise. Le seul point pour lequel ICU n’est pas en accord est la tache
située au nord-est de la berge, qu’il classe en SPAI plutdt qu’en SPA2 (il s’agit de la tache & droite, celle
de gauche ne faisant pas partie de ’expertise). Cela est di au fait que les spectres sont trés similaires.
Les classifications obtenues sont correctes (le k-index est de 0.81, la qualité Qgccur est de 81.1%).

La figure 7.9 montre la carte de recouvrement. Les pixels correspondants & des zones détectées comme
étant mixtes par ’algorithme sont affichés en grisé, comme la tache de SPA2 en bas de I'image. De plus,
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Fia. 7.8 — Spartina Maritima.

Nombre de régles activée:
par un échantillon :

.

1 2 3 4 5

F1G. 7.9 — Carte de recouvrement pour la lagune de Venise.

les pixels correspondants & des zones non apprises sont affichés en rouge (comme c’est le cas pour 'eau
par exemple, ce qui permettrait & ’expert de les situer et de les inclure lors d’un apprentissage ultérieur.
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7.3.1.2 Classification avec XCS-R

La classification obtenue avec XCS-R et la matrice de confusion correspondante sont présentées sur
la figure 7.10, et les paramétres dans le tableau 7.2. La encore, des boucles de tests imbriquées ont été
utilisées pour sélectionner les meilleurs parameétres en fonction de mesures de qualité et de précision. Cette
classification est trés semblable & celle obtenue pour ICU, incluant le bord du marais, pourtant incrusté
de nombreux mizels. On peut aussi noter la grande précision de XCS-R lors de la délimitation des zones
de ground-truthing : globalement, les frontiéres des classes correspondent au parcours pédestre initial
de ’expert sur le terrain, consistant & valider les zones frontaliéres. L’étude de la matrice de confusion
montre que XCS-R est meilleur pour la séparation des classes SPA1 et SPA2, sans doute grice au jeu de
régles plus important. Finalement, la qualité globale est trés bonne (x-index de 0.88, Qgccur de 87.7%).

Paramétre Valeur

Taille du jeu de régles |P| = 2300 individus
Critére d’arrét 500000 générations
Modifications aléatoires (cover-rand) 10°
Fréquence d’appel de 'AG (0 4) 48
Fréquence de généralisation (dontCareProb) 0.60
Probabilité de croisement x = 1.0
Probabilité de mutation uw=0.04
Opérateur de sélection Tournoi n-aire
Taille du tournoi 0.4 |P|

Taux d’apprentissage 8 =02
Paramétres de la fonction de qualité a = 0.1, = 0.001
Facteur pour la gratification v=10.9
Durée du traitement 41 min (CPU de 2.5 GHz)

TAB. 7.2 — Paramétres utilisés pour XCS-R sur CASI [Butz et Wilson, 2002; Wilson, 1995].

Nombre de pixels selon I'expert

SAR2[LISR[SPA2 [SPAL[LIML] Quu
- |SAR2| 266 | 12 | 0 | 0 | 3 |95%
23| LSR| 11 [383] 0 | 0 | 2 [91%
<Z[SPA2| 0 | 0 [353] 83 | 1 [81%
S8[sPal]| 0 [ o | 27 [[106 | 3 [78%
SglUML] 4 [ 4 | 5 | 34 [493]91%
% | Qeens | 95% | 89% | 92% | 48% | 98%

F1G. 7.10 — Image classifiée et matrice de confusion pour XCS-R.

7.3.2 Réduction par post-traitements

Dans I’étude précédente, nous avions précisé que le systéme XCS-R. nécessite un jeu de régles assez
important, afin d’avoir une qualité acceptable. Ainsi, entre 2000 et 3000 régles, toutes actions confondues,
sont nécessaires pour avoir une qualité supérieure & 80%. Nous rappelons que cet algorithme est capable
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de découvrir, par lui-méme, le nombre de régles nécessaires & chacune des classes, ce qui lui permet de
ne consacrer que quelques-unes des régles aux cas les plus triviaux et le reste du jeu pour les autres
classes, plus complexes. Pour traiter chaque classe complexe d’un probléme comprenant cing classes, les
besoins en régles de XCS-R pouvaient atteindre 30% du jeu, par rapport & une moyenne de 20%. Les
régles n’étant pas pourvues de disjonctions, elles devaient modéliser les groupes d’échantillons presque
individuellement, ce qui accroit la taille du jeu de régles (en effet, deux disjonctions spectrales nécessitent
quatre régles distinctes). De plus, le fait que XCS-R tente de trouver une représentation compléte du
probléme (ang., complete mapping) 'oblige & consommer encore plus de régles, méme si elles ne sont pas
nécessaires.

100,00%
r 90,00%
r 80,00%
r 70,00%
r 60,00%
r 50,00%

r 40,00%

Performance

r 30,00%
r 20,00%

\ﬁ‘ﬁ\H 10,00%

T T T T T T T T T 0,00%
2300 2280 2260 2240 2220 2200 2180 2160 2140 2120 2100

Nombre de regles

Fi1a. 7.11 — Perte de la performance par réduction aléatoire du jeu de régles de XCS-R.

0,9 1 /’/,,4//‘
0,8

0 T T T T T
0 100 200 300 400 500 600

Nombre de regles

F1a. 7.12 — Performances des jeux de régles obtenus aprés une réduction optimisée par algorithme gé-
nétique des résultats initiaux de XCS-R. Comparaison de jeux de 5, 10, 20, 30, 50, 100, 200 et 500
régles.

Nous avons alors voulu savoir si le jeu de régles obtenu par XCS-R était robuste, c¢’est-a-dire si une
qualité similaire en classification pouvait étre atteinte avec un jeu réduit. Le test a consisté tout d’abord
a analyser la perte de performance occasionnée par une suppression aléatoire des régles, réduisant le jeu
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de 2300 & zéro régles. La mesure de performance est basée sur la mesure @Q gceyr définie dans la section
4.6.1.1, calculée sur des ensembles de test. 1000 expérimentations ont été effectuées et la figure 7.11 montre
un exemple de perte typique qui a été observée entre 2300 et 2100 régles. On se rend compte que la perte
est déja de 50% aprés une suppression de seulement 60 régles, soit moins de 3% du jeu de régles initial.
Ce graphique est & comparer avec la figure 7.12. Nous avons utilisé les principes de post-traitements par
algorithme génétique édictés dans la section 6 : différentes expérimentations ont été conduites avec des
génomes représentant 5, 10, 20, 30, 50, 100, 200 et 500 régles. Chaque extrait consiste en une sélection
de régles, optimisée par algorithme génétique, formant une sous-population de la population initiale.
On remarque que dans le meilleur des cas, on atteint une performance de 80% rien qu’en choisissant
correctement une cinquantaine de régles, ce qui démontre l'intérét de la sélection génétique par rapport a
une sélection aléatoire. Pour obtenir des statistiques plus précises, 1000 expérimentations génétiques ont
été conduites sur des jeux de 500 régles. Nous avons alors pu obtenir, en moyenne, 99% de jeux dont la
performance se situe dela de 85%. Les résultats obtenus sur un sous-ensemble de régles sont équivalents,
voir meilleurs, que sur ’ensemble complet pour plusieurs raisons. Tout d’abord, la présence de régles trop
spécifiques perturbait la performance sur les jeux de test (sur-apprentissage). Ensuite, il est possible que
certaines régles représentent du bruit : en les supprimant, on peut améliorer la capacité de discrimination
générale de ’ensemble de régles.

— Aprés optimisation
Avant optimisation - Classe Nombre de régles
Classe Nombre de régles 1 1
1 200 9 4
2 500 3 4
3 528 4 4
4 509 5 4
5 563
Total 2300 — Total _ 022329(9;"7))
erf. en apprentissage . -6%
[ Perf. en test | 0-890 | Perf. en test 0.793 (-11%)

FiG. 7.13 — Comparaison entre un jeu de régles initial obtenu avec XCS-R sur des données hyperspectrales
et le méme jeu de régles post-traité en utilisant une technique a base d’AG.

En utilisant les autres types de génomes présentés dans la thése, nous avons pu réaliser I’expérience
présentée dans les tableaux de la figure 7.13. De nouvelles régles ont été construites par raffinement
d’un jeu de régles appris de XCS-R, en utilisant la transformation et la recombinaison. Nous obtenons
donc une perte de qualité limitée & 11% pour une réduction de plus de 99% du jeu de régles. Le post-
traitement génétique est donc un atout trés efficace pour contourner la gourmandise en régles des systémes
de classifieurs.

7.3.3 Classification de type floue

Nous nous intéressons, dans cette partie, & la validation du formalisme des régles permettant de
résoudre des problémes de classification floues. Dans ces problémes, les classes & apprendre doivent étre
modélisées, par la représentation, sous forme de fonctions associant un échantillon & une note continue.
La note est sensée indiquer la proportion d’une classe donnée dans cet échantillon. Le probléme est donc
vu comme un probléme de régression plutot que de classification. Les représentations adéquates pour ces
régles sont des arbres dont l'opérateur situé au sommet est capable de produire une valeur réelle. Dans
ICUX, il s’agit de l'opérateur Match() modélisant cette valeur comme une distance entre la régle et
I’échantillon. Dans ProgGen et GramGen, la valeur est produite par un opérateur mathématique situé
au sommet de ’arbre de calcul.

Nous avons cherché & retrouver deux indices concernant la composition d’un mizel en végétation. Le
premier indice, trés connu en télédétection, est I'indice NDVI (ang., Normalized Difference Vegetation
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Indez) :
Ci—Cy
NDVI = ————— 7.1
C1+ Cy (7.1)

Cet indice permet, dans certains cas, I'estimation de la composition en végétation d’échantillons
spectraux. Cette équation utilise le fait que le rayonnement solaire est réfléchi plus fortement par une
végétation en pleine croissance dans le proche infrarouge que dans des longueurs d’onde plus courtes
situées dans la partie visible du spectre [Mohr, 1999]. Généralement, avec 'instrument VEGETATION
de SPOT, on utilise XS3 pour la variable C; et XS2 pour la variable C5. Dans un contexte hyperspectral,
les canaux sont & déterminer au cas par cas, en fonction des longueurs d’onde. Cet indice est étudié ici
sur des données multispectrales (SPOT, 3 canaux, 1999) et hyperspectrales (CASI, 288 canaux, 2003).

Le second indice n’existe pas, a notre connaissance, sous une formulation standard. Nous le nom-
merons I, et il consiste & déterminer la proportion dans le sol d’une plante connue sous le nom de
Limonium Narbonense, plus communément appelée Lavande de mer, typique des marais et des sols ar-
gileux. Nous nous sommes intéressé & la découverte de cet indice car il s’agit d’une classe d’intérét dans
le cadre du projet TIDE. Pour cette étude, nous avons utilisé les données de MIVIS (20 canaux) car les
relevés des compositions pour cette espéce de végétation et pour la date de survol du satellite (juillet
2003) comprennent des valeurs de pourcentages variées.

7.3.3.1 Indice NDVI multispectral

Nous utilisons dans cette étude ProgGen, l'algorithme & base de programmation génétique sans
grammaire, puisqu’utiliser une grammaire dans ce cas serait trop trivial. Le but de ’algorithme est de
déterminer la formulation de l'indice en fonction d’un jeu d’opérateurs de calcul et d’une contrainte
souple sur le nombre de nceuds. L’algorithme choisira de respecter ou non cette contrainte en fonction
de I’évaluation des arbres engendrés. Selon des expérimentations mettant en jeu des boucles de tests
imbriquées, les parameétres sélectionnés en fonction de la qualité obtenue sur ces données sont présentés
dans le tableau 7.3. L’opérateur de division utilisé, tout comme ceux des études qui vont suivre, est un
opérateur de division protégée. Ce jeu d’opérateurs a été choisi car il correspond aux opérateurs déja
utilisés dans les formules d’indices habituels des géographes.

Valeur

100 exemples (< 1% des données)
|P| = 200 individus

5 & 10 nceuds

200 générations

Paramétre
Echantillonnage
Taille du jeu de régles
Taille des arbres
Critére d’arrét

Opérateurs {+, -, *, /, somme & arité N (opSOMM), va-
leur absolue (opABS)}

Terminaux {constantes (opCST), canaux spectraux
(0pARG)}

Pt 0.15

Peross 0.70

Opérateur de sélection
Opérateur de remplacement
Nombre d’enfants par génération
Elitisme

Durée du traitement

Ranking direct

Ranking direct

P

1% (fort)

7 min (CPU de 2.5 GHz)

TAB. 7.3 — Paramétres utilisés pour ProgGen sur SPOT, voir la section 5.3.2.

La formule qui fut finalement trouvée est présentée dans ’équation 7.2. Cette formule

I'indice, aprés simplification :

se réduit a
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1.0654 + 3 — [1.0654 + 2|
|z3 + 22|

fSPOT =

7.3.3.2 Indice NDVI hyperspectral

Le méme algorithme a été appliqué sur une image de CASI. Cette image présente la particularité
d’avoir un nombre de canaux plus élevé, dont beaucoup étaient corrélés, laissant & ’algorithme le soin de
choisir les canaux C7 et Coy de I’équation 7.1. Les paramétres utilisés sont présentés dans le tableau 7.4.

Paramétre

Valeur

Echantillonnage
Taille du jeu de régles
Taille des arbres
Critére d’arrét
Opérateurs

Terminaux

Prut
Peross
Opérateur de sélection

Opérateur de remplacement
Nombre d’enfants par génération

9000 exemples (1% des données)

|P| = 200 individus

10 & 20 nceuds

700 générations

{+, -, *, /, somme & arité N (opSOMM), va-
leur absolue (opABS)}
{constantes (opCST),
(opARG)}

0.15

0.70

Ranking direct
Ranking direct

P

canaux spectraux

Elitisme
Durée du traitement

1% (fort)
40 min (CPU de 2.5 GHz)

TAB. 7.4 — Paramétres utilisés pour ProgGen sur CASI, voir la section 5.3.2.

L’augmentation du nombre de canaux nous a conduits & augmenter le nombre de générations et la
taille souhaitée des arbres. La formule qui a été créée par ’algorithme est la suivante :

2.2526 - r11 — 2.2526 - xrg — T4
6.4977 - x12 + 6.4977 - x5 — 6.2888

foast = 2.2526 - (7.3)

FiG. 7.14 - Sur la figure de gauche (a)
végétation selon NDVI. Sur la figure de droite (c) : présence de végétation selon foasy-

: extrait de CASI. Sur la figure du milieu (b) : présence de

1l est difficile d’estimer la valeur de cette formule par comparaison directe avec NDVI. Nous avons
alors comparé les résultats des deux indices. La figure 7.14 montre un extrait d’une image de CASI avec le
calcul de ces deux indices. Nous constatons que les images sont trés proches : la corrélation entre ’indice
NDVI et fcass est trés bonne (C = 0.986). Pourtant, cette formule contient quatre variables différentes
plutét que deux. L’indice qui devait étre imité est le suivant :
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Z11 — I3
Ti1 + 23

Nous constatons donc une confusion entre xi; et x1s d’une part, et x3 et zg d’autre part. Les
corrélations entre ces canaux sont cependant trés fortes (respectivement 0.868 et 0.997), ce qui explique
la confusion. Finalement, les formules trouvées pour SPOT et CASI sont plutdt courtes et fiables a la
réalité. Les formules exhibées par la programmation génétique, méme si elles ne sont pas exactes, peuvent
toujours étre substituées & 'indice NDVI, par exemple dans le cas ot nous chercherions d’autres canaux
que ceux qui sont standards pour obtenir le méme résultat (contournement de canaux bruités, ...).

NDVIcasr = (7.4)

7.3.3.3 Indice Iy, multispectral

Les valeurs de composition en Limonium des échantillons (mizels) sont beaucoup plus variées sur
les données de MIVIS que les données de CASI ou de SPOT. La figure 7.15 présente la répartition
statistique des échantillons en fonction de leur composition en Limonium ou d’'une autre classe pour
les contre-exemples. Nous disposions de 975 exemples, dont 50% d’exemples contenaient une proportion
dominante de Limonium et 60% en contenaient au moins 5%. Les contre-exemples sont principalement
de I’eau et du sol mais proviennent de toutes les classes. L’image MIVIS comprend 20 canaux spectraux
et chaque mizel a une résolution de 2.6 m?2.
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F1G. 7.15 - Jeu de données pour l'indice I, .. Figure de gauche : répartition des exemples en fonction
de la quantité de Limonium dans les échantillons. Figure de droite : répartition des classes des contre-
exemples.

Nous avions donc une base propice a I'apprentissage de Uindice I ;.. puisqu’il pourra étre valideé
pour des proportions variées. Il est & noter qu'une telle base est plutdt rare puisque chaque échantillon
a da étre validé a la main, en accord avec les données spectrométriques au sol et I’analyse visuelle des
photographies des vérités terrain (ground-truthing). De plus, ce type de base ne faisait pas partie des
objectifs principaux du projet TIDE.

La découverte d’un tel indice n’étant pas triviale, nous avons préféré contraindre I’espace de recherche
par une grammaire. L’algorithme GramGen a donc été utilisé a cette fin. Nous avons mené plusieurs
expérimentations avec plusieurs grammaires. Le paramétrage général est présenté dans le tableau 7.5.

Pour les expérimentations présentées ici, nous avons utilisé quatre grammaires engendrant des arbres
de différentes tailles. Les trois premiéres produisent des arbres ayant des profondeurs respectives situées
dans les plages [2;3], [2;4] et [3;5]. Elles présentent la particularité de n’utiliser que des opérateurs et
des canaux spectraux et donc de ne pas utiliser de constantes. En effet, 'utilisation de constantes tend
souvent & présenter I’algorithme en situation de sur-apprentissage et rend les formules découvertes plus
dépendantes du jeu de données que celles sans constantes. Il serait par exemple envisageable de récupérer
les longueurs d’onde des canaux pour appliquer ces formules sur une autre image. Bien entendu, leur
qualité est souvent meilleure, d’ou ’expérimentation avec la quatriéme grammaire avec laquelle nous avons
autorisé 'algorithme & créer des constantes aléatoires. Cette grammaire est présentée a titre d’illustration
ci-dessous :
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Paramétre Valeur

Echantillonnage 100 exemples (10% des données)

Taille du jeu de régles |P| = 250 individus

Taille des arbres 10 & 30 nceuds

Critére d’arrét 500 générations

Opérateurs {+, -, *, /, valeur absolue (opABS), opINV,

opSQ, opINF, opSUP, If ... Then ... Else,
opINTER, opRND, opEMPTY, opPOP, op-
PUSH, opSOMM}

Terminaux {constantes (opCST), canaux spectraux
(opARG)}

Pt 0.15

Peross 0.60

Opérateur de sélection Ranking direct

Opérateur de remplacement Ranking direct

Nombre d’enfants par génération | |P|

Elitisme 1% (fort)

Durée du traitement 10 & 50 min (CPU de 2.5 GHz)

TAB. 7.5 — Paramétres utilisés pour GramGen sur MIVIS, voir la section 5.3.2.

# Start symbol
S -> EQ24

# Définition d’une équation simple (profondeur 1 & 2, de 1 & 3 noeuds)
EQ12 -> Arg | OP Arg Arg

7 noeuds

[N

# Définition d’un arbre de profondeur 2 & 3 avec 3
EQ23 -> 0P EQ12 EQ12

15 noeuds

o/

# Définition d’un arbre de profondeur 2 a 4 avec 3
EQ24 -> EQ23 | OP EQ23 EQ23

# Définition des opérateurs et des arguments
OP -> opADD | opSUB | opMUL | opDIV | opABS
Arg -> opARG | opCST

Les symboles & gauche des fleches sont les symboles non terminaux des arbres génotypiques, ceux a
droite sont des symboles terminaux ou non qui sont utilisés pour la dérivation. Les symboles terminaux
correspondant & des fonctions (opérateur de noeud) sont toujours suivis par les symboles qui représentent
leurs arguments. Pour simplifier la notation, et sans perte de généralité, il ne peut y avoir qu’un seul
opérateur de nceud par disjonction grammaticale. Par exemple, le terme non ambigu « opMUL opARG
opCST » dénote une multiplication entre I'un des attributs d’un échantillon (opARG) et une constante
instanciée par GramGen (opCST).

Les différentes formules produites sont, présentées dans le tableau 7.6, avec le résultat de la fonction
d’évaluation (comprenant ’évaluation sur le jeu d’apprentissage et le respect des contraintes de tailles,
fixées par I'utilisateur), leur qualité sur le jeu de données de test (mesurée par la corrélation par rapport
aux compositions attendues) et le nombre de générations au bout desquelles elles ont été découvertes.

On note I'importance des canaux by (740 nm) et byg (800 nm) pour I, (ils apparaissent huit fois
dans les formules). Une trés bonne corrélation est observée pour les deux premiéres formules, malgré leur
simplicité. La premiére formule, par exemple, est obtenue trés rapidement, en dépit du faible nombre
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Formule Evaluation | Corrélation | Génération
1 Bio—tus 0.859 0.802 14
2 T T 0.904 0.876 224
big:b (by—bo)+(bs-b1s)
3| Tambol it ~ bkt 0.668 0.814 463
4 b41.70_98{4°5 — Vb 0.694 0.858 94

TAB. 7.6 — Formules approximant I'indice /.., avec quelques paramétres caractéristiques.

d’exemples dans I’ensemble d’apprentissage. L’algorithme Gram@Gen est donc capable de découvrir des
formules concises, relativement expressives pour I’expert (car elles ressemblent beaucoup a I'indice NDVI)
et dans un temps relativement court. Surtout que l'espace des données est trés vaste : par exemple, pour
un arbre contenant cinq arguments au niveau des feuilles, comme la formule numéro 2, il faut tester 20°
soit plus de 3 millions de combinaisons, sans compter celles des opérateurs. Cependant, nous n’avons
testé que des opérateurs de base et des grammaires plutot simples. L’utilisation d’opérateurs spécifiques
au domaine d’étude encouragerait sans doute I’amélioration de ces résultats.

7.4 Complexité de ’apprentissage et tuning

Dans cette partie, nous nous intéressons essentiellement a I’étude de la complexité de ’apprentissage
de XCS-R. Nous avons vu dans les sections précédentes que ce systéme de classifieurs était un algorithme
plutét gourmand, en temps, en mémoire, et pour la taille de la base de régles, par rapport & ICU.
Nous avons donc cherché & connaitre 'influence de certains parameétres sur le temps et la qualité de
Papprentissage. Cette section présente nos résultats sur les données de QuickBird (324 exemples et 4

attributs) sur une machine cadencée a 2.5GHz.

7.4.1 Temps d’apprentissage

La durée importante d’apprentissage est souvent considérée comme un défaut majeur en algorith-
mique évolutionnaire. Les deux plus importants paramétres de XCS-R concernant le temps d’appren-
tissage sont le nombre de générations (c’est-a-dire le nombre de cycles de I’algorithme génétique, Ng) et
le nombre de classifieurs (7jp1), qui représente aussi la taille du jeu de régles final. Compte tenu du role
joué par les différents ensembles de classifieurs (population set, action set, ...) qui peuvent avoir une taille
variable au cours de ’apprentissage, il n’était pas évident de calculer directement la complexité théorique
pour Ng et Tip). Nous avons alors tenté de la déterminer de maniére empirique. Nous avons obtenu un
temps d’apprentissage linéaire pour la taille de la population, si ’on fixe le nombre de générations (voir la
figure 7.16). Le temps d’apprentissage, en millisecondes, a été estimé a 26.27}p) 4 3400 avec un coefficient
de détermination de R% = 0.98 (pour Ng = 20000).

Pour chaque valeur possible de Ng, nous avons calculé les lois linéaires dont les coefficients de
détermination sont minimaux. Nous avons remarqué que leurs coefficients directeurs et leurs ordonnées
a Dorigine sont eux-mémes linéaires en Ng. Nous en avons déduit une approximation (avec une erreur
moyenne de 40%) du temps de calcul, linéaire en Ng - Tip) :

N - Tip)
t=—ga +79.52 Tjp| +0,4055 - No — 23155 (7.5)

7.4.2 Qualité de I’évolution

L’étude plus précise de certaines mesures durant I’apprentissage de XCS-R est riche d’enseignements.
La figure 7.17 présente I’évolution typique du pourcentage de régles correctes. Nous voyons qu’'une qualité
d’apprentissage supérieure & 0.9 est obtenue a partir de 200000 générations. Il est clair qu’un nombre de
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FiG. 7.16 — Temps d’apprentissage de XCS-R en fonction de la taille du jeu de régles Tip (pour Ng =
20000).

générations trop faible est & proscrire, mais a 'inverse, un nombre de générations trop élevé peut conduire
I’algorithme & apprendre par coeur. Ici nous voyons que la qualité n’atteint jamais 100%, car elle est bornée
par introduction de nouvelles régles dans la population. Le renouvellement de cette population est donc
constant et correctement controlé par XCS-R.

1

Pourcentage moven du nombre de classifieurs corrects

I I
a ceaBeE 400000 SOAGBA S06BG60 le+@é 1.2e+86 1.de+@6 1.6e+86 1.85e+@6 2e+B6

8.3 1 1 1 1 1 1

Mombre de générations

Fi1G. 7.17 — Pourcentage de classifieurs qui sont corrects en fonction du nombre de générations.
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FiG. 7.18 — Taille réelle du jeu de régles |Tpj| en fonction du nombre de générations.

En fait, la taille du jeu de régles (Tip) n’est qu'une taille virtuelle. Les classifieurs sont dotés d'un
numéro incrémenté 4 chaque fois qu’un de leur clone (macro-classifieur) est inséré dans la population. On
peut se rappeler du paramétre de numerosity (ang.) a ce sujet (voir la section 5.2.2.2). En fait, la taille
réelle (|Tp)|) indique le nombre de classifieurs différents dans le jeu de régles, c’est-a-dire la complexité de
la connaissance apprise. L’évolution de ce parameétre, montrée sur la figure 7.18, présente donc un intérét.
Nous y voyons qu’un nombre important de régles spécifiques sont, créées au début de I'apprentissage,
notamment par le Covering Operator. Chacune de ces régles ne s’active souvent que pour un ou deux
exemples. Ensuite, des régles plus générales sont créées, et font converger la taille du jeu de régles vers
une certaine proportion (ici la moitié) de la taille paramétrée par 1'utilisateur.

Le dernier graphique de cette partie (figure 7.19) montre I’évolution de la spécificité des régles. Une
régle spécifique est activée par un nombre d’exemples plus faible et participe & 'augmentation de la taille
réelle du jeu de régles. Lors de 'utilisation de données de télédétection a valeurs continues, la spécificité
est calculée en fonction de la surface de définition des conditions de la régle. En premier lieu, I’algorithme
n’a aucune connaissance particuliére et injecte des régles spécifiques dans la population, jusqu’a ce qu’un
phénoméne de sur-apprentissage survienne et soit apparemment éliminé. En réalité, XCS-R élimine un
certain nombre de classifieurs spécifiques par le truchement de la pression génétique (notamment par
I’opérateur de mutation qui produit de la généralisation et grace au principe de partage de la récompense
qui affaiblit les classifieurs spécifiques). Compte tenu des principes de fonctionnement de ce systéme de
classifieurs, ce comportement est attendu et s’observe aprés quelques milliers de générations.

7.4.3 Tuning

Afin d’améliorer la qualité de la population apprise par XCS-R, différents paramétres ont été testés.
Nous avons lancé de 100 & 1000 expérimentations en étudiant 'influence de la taille de la population,
le nombre de générations et certains parameétres internes a l'algorithme comme le cover-rand et 6y
(fréquence d’appel de ’AG sur la population [P]). La figure 7.20 présente la qualité observée de la base
de classifieurs sur un jeu de test, en fonction de la taille réelle de la population (7]p)), paramétre spécifié
par l'utilisateur. Nous observons une augmentation rapide de la qualité jusqu’a un certain seuil, qui est
dépendant a la fois des données (nombre d’échantillons et nombre d’attributs), et dans une moindre mesure
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Spécificité movenne des classifieurs
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Fia. 7.19 — Spécificité moyenne des classifieurs en fonction du nombre de générations.

d’autres paramétres comme le nombre de générations. Comme nous le remarquons sur le graphique, ce
seuil est d’environ 2000 régles. Parce que ces expérimentations sont trés longues, nous n’avons pas réalisé
de lissage, d’ou1 laspect en pics de ce graphique'. Notons aussi que la qualité observée sur les matrices
de confusion DCM (voir la section 4.6.2.1) est inférieure & celle obtenue sur les matrices classiques : un
probléme de classification de type soft étant toujours plus difficile qu'un probléme de type hard.

Un autre test est présenté ici en utilisant les courbes ROC (ang., Receiver Operating Characteristic)
introduite dans la section 4.6.2.4. Une question intéressante concerne I’étude de 'influence de la spécificité
des classifieurs par rapport aux taux de faux positifs et faux négatifs. Par exemple, un classifieur trop
générique couvrira un domaine de définition trop vaste et s’activera pour chaque exemple. A linverse,
un classifieur trop spécifique ne s’activera jamais et sera inutile dans le jeu de régles. La spécificité d'un
classifieur se mesure par la surface couverte par les intervalles des conditions, par rapport & une mesure
dépendante de la base de classifieurs (par exemple, la moyenne des surfaces des régles de tout un jeu de
régles) de telle sorte qu’elle soit indépendante de ’échelle des données. Les courbes ROC représentent
un moyen efficace de tester l'influence de la spécificité des classifieurs en modifiant leur taille. Cette
modification correspond au paramétre p de la courbe.

Aprés Papplication de ce paramétre, pris dans Uintervalle [0;1], la partie <condition> [mEf; M[]
d’une régle R pour ’attribut ¢ est remplacée par :

mi + M

2

Le jeu de données est ensuite classé avec la nouvelle population et les mesures de qualité 1 — Qspe
et Qsens sont reportées sur la courbe. La figure 7.21 montre le résultat obtenu.

Nous y voyons que les classes pures « sar2 » (Sarcocornia Fruticosa) et « spa2 » (Spartina Maritima)
sont moins sensibles a la spécificité des régles de XCS-R. A l'inverse, les classes mixtes nécessitent
des classifieurs plus efficaces. On peut noter que les meilleurs classifieurs, correspondant a la distance
ACy la plus courte, sont obtenus pour p = 1, c’est-a-dire correspondant aux classifieurs originaux, sans
modification. Le systéme de classifieurs apprend donc déja les meilleurs régles possibles.

[w—ep+e] ou p= et e=p-p (7.6)

ID’autres expérimentations pourraient améliorer la qualité visuelle de ce graphique, mais nous avons décidé de conserver
celui présenté ici car il met en évidence la variabilité des valeurs observées.
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Fia. 7.20 — Qualité observée de la base de classifieurs, mesurée a I'aide du k-index sur la matrice de
confusion habituelle K(CM) et sur la matrice de confusion directe K(DCM), en fonction de la taille réelle
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Fia. 7.21 — Courbes ROC pour chaque classe du jeu de données de CASI.
De toutes les études de tuning que nous avons menées, nous en avons conclu qu’un post-traitement

de type génétique, comme présenté dans la section 7.3.2, reste plus efficace que la modification directe
des paramétres internes de XCS-R.. Cependant, cette solution peut s’avérer la plus rapide pour obtenir
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un jeu de régles de qualité, d’autant plus qu'un post-traitement génétique nécessite une base de régles
d’une taille suffisamment élevée.

7.5 Comparaisons avec d’autres systémes

7.5.1 Comparaison avec une méthode inductive

Dans cette premiére partie, nous souhaitons comparer trois des méthodes développées dans cette
thése concernant la classification hard (ICU, XCS-R et XCS5) a C4.5 [Quinlan, 1993], une méthode
inductive dont nous nous sommes inspirés pour construire 'algorithme XCS5. L’algorithme C4.5 est
toujours considéré comme une référence pour le traitement des images satellitaires au moment ot nous
écrivons ces lignes [Debeir et al., 2001]. Plutot que de discuter des résultats a ’aide d’images et de mesures
de qualité, nous allons ici nous intéresser a la comparaison des représentations.

Nous rappelons briévement les caractéristiques de ces algorithmes.

ICU est un algorithme évolutif produisant une régle de classification pour chaque classe a traiter. La
partie <condition> des régles est formée de conjonctions de disjonctions d’intervalles, ce qui autorise
I’algorithme & regrouper plusieurs groupes de spectres dans la méme classe par une seule régle.

XCS-R est un systéme de classifieurs produisant une base de régles pour toutes les classes & traiter. La
partie <condition> des régles est formée de conjonctions d’intervalles.

XCS5 est un algorithme de post-traitement d’une base générée par XCS-R et y extrait un arbre de
décision classifiant toutes les classes a traiter.

C4.5 est un algorithme inductif créant un arbre de décision pour toutes les classes a traiter.

Pour la comparaison, les paramétres principaux de ces algorithmes ont été choisis afin d’obtenir la
base de régles ou les arbres les plus légers possible, tout en ayant la meilleure qualité sur ’ensemble
d’apprentissage. Nous avons travaillé sur 'image de QuickBird, comprenant 4 canaux spectraux, 324
exemples et 5 classes.

C4.5 | ICU | XCS-R | XCS5

Nombre de noeuds 37 — 35
Nombre de feuilles 19 - — 5
Profondeur moyenne 4.6 — — 6.5

Nombre de régles — 5 2300 —
Qualité en apprentissage | 0.90 0.77 0.81 1.00 ¢

Qualité en test 0.75 0.67 0.69 0.78 ¢
Classe « jun » (qualité) | 0.76 ¢ | 0.70 0.61 0.69
Classe « lim » 0.83 0.63 0.93 1.00 ¢
Classe « sar » 0.56 0.65 ¢ | 0.35 0.40
Classe « spa » 0.75 ¢ | 0.65 0.45 0.51
Classe « wat » 0.77 0.73 1.00 ¢ 1.00 ¢

TAB. 7.7 — Comparaison de certains paramétres associés aux résultats des méthodes C4.5, ICU, XCS-R
et XCS5. Les meilleures qualités sont représentées par le symbole o.

Par leur nature, ces algorithmes produisent des objets de types différents. Une synthése est proposée
dans le tableau 7.7. Nous considérons que parmi les critéres définis dans la section 1.2, la qualité de
généralisation correspond a la mesure « qualité en test » définie dans le tableau, et que les critéres de la
simplicité de la représentation et celui de la compréhensibilité sont représentés par les mesures des tailles
des arbres ou des bases de régles produites.

D’aprés le tableau 7.7, la représentation la plus simple est obtenue avec ’algorithme ICU, suivi
des algorithmes C4.5 et XCS5. XCS5 produit des arbres légérement plus petits que C4.5, bien que la
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profondeur moyenne des arbres, correspondant & la durée de son évaluation, soit légérement supérieure.
Cependant, XCS5 permet, d’obtenir la meilleure qualité d’apprentissage et de généralisation par rapport
a ’ensemble des algorithmes testés.

= 1107 304694

<= 1102502410 = 1102502410

== 11105234362 = 110824362 == 1107460747 = 107450747

womo e e s

Fi1G. 7.22 — Extrait de ’arbre de décision obtenu avec C4.5 pour l'image de Quick Bird.

Classe Condition 1 Condition 2 Condition 3 Condition 4
water [184254095; 1697585823 | [1111095941;1112633176] | [1101700664; 1107911210] [65713000; 1689640133]
spa aucune aucune [812607812; 3995608073] [1101328817;1107529419]
sar [1111197921;1111900618] aucune [1103982725; 1106351939] [1104847294;1108970791]
jun [1111831774; 1113828805] aucune [1105993125; 1110841190] | [1553060173;4126604578] v [1107331890; 1109909944]
lim aucune aucune [1100513714; 1105572097] [1107829371;1116219594]

F1G. 7.23 — Base de régles obtenue avec ICU pour 'image de QuickBird.

Bien que les représentations obtenues soient assez simples, il nous a été difficile de présenter un arbre
a 30 noeuds ici. Nous avons sélectionné, dans les figures suivantes, quelques extraits pour les algorithmes
C4.5 (figure 7.22), ICU (figure 7.23) et XCS5 (figure 7.24). Dans les arbres, la branche de gauche fait
référence au label « oui », tandis que celle de droite fait référence au label « non ».

A titre de comparaison, examinons par exemple les classes « jun » (Juncus Maritimus) et « spa »
(Spartina Maritima). Pour XCS5, larbre de la figure 7.24 nous présente deux régles permettant de
classifier des exemples de ces classes, selon des pré-conditions situées plus haut qui ne sont pas montrées
dans Pextrait. Il s’agit des régles numéro 42 et 75, détaillées dans le tableau de la figure 7.24. Sur la
figure 7.22, C4.5 discrimine les deux classes en utilisant la bande numéro 2 (partie inférieure gauche de
Parbre). Quant & ICU, il discrimine les deux classes en utilisant essentiellement les bandes 1, 3 et 4 (voir
la figure 7.23).

Mathématiquement, pour la classe « jun », une partie des conditions d’activation des régles sont les
suivantes, selon les extraits des différentes régles :

((by € ]1107304644;1108508410])
A(b2 < 1110584362))

Vo ((bs > 1108508410)

A(bs > 1107450747))

alors « jun »

fC’4.5 = si
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A
C=Jun C=Spa
Reégle Condition 1 Condition 2 Condition 3 Condition 4
R=24 [1111474566;1112976266] | [1109878107;1111125153] | [1106714425;1107233966] | [1106443267;1107968839)
R=32 [1112282247;1113473514] | [1110481959;1112065376] | [1106895645; 1109565375] | [1107556909; 1108920696]
R=42 [1111628106;1113521542] | [1109963290; 1111335420] | [1106428437;1107909976] | [1107821093; 1109097650]
R=75 [1110643798;1114002012] | [1108118897;1111982040] | [1102530129;1109565375] | [1108803992;1111062741]
R=1196 | [1112589385;1113670011] | [1110625446;1112526849] | [1108626370;1109026719] | [1106776090; 1111062741]
R=1272 | [1111499901;1113670011] | [1109669653;1110073050] | [1106719643;1108320872] | [1106982143;1108222551]

F1G. 7.24 — Figure du haut : extrait de I’arbre de décision obtenu avec XCS5 pour 'image de QuickBird.
Tableau du bas : extrait de la base de régles de XCS-R. correspondant & I’arbre de décision.

fiou == si by € [1111831774;1113828805]
A b € [1105993125;1110841190]
A ((bs € [1553060173;4126604578])
V(bs € [1107331890; 1109909944]))
alors « jun »

fxcss := si by € [1111628106;1113521542)
by € [1109963290; 1111335420]
bs € [1106428437;1107909976]
by € [1107821093; 1109097650]

alors « jun »

> > >

ou b; représente la valeur de radiance contenue dans I’échantillon pour la bande spectrale 3.

Meéme §’il est vrai que ces équations ne donnent qu’une vue partielle des régles réellement trouvées
par les algorithmes, il y a un certain nombre de caractéristiques communes concernant la connaissance
apprise, qui ont été dégagées par ces extraits :

— la valeur b est écartée en tant qu’attribut inutile ou du moins non discriminant par les trois
équations (I’attribut n’apparait pas pour ICU, et une plage trés large lui est réservée dans les
autres équations),

— la valeur bs est ciblée trés précisément par les trois équations et doit se trouver dans la plage
[1107450747;1107909976],
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— la valeur by est, elle aussi, précisée de fagon étroite par les trois équations qui la situent aux environs
de la plage [1107821093; 1109097650].

Lorsque 'on regarde les différentes qualités obtenues sur les jeux de test pour les différentes classes,
détaillées dans le tableau 7.7, on observe qu’aucun des algorithmes n’est performant pour toutes les classes
a la fois. En fait, chacun des quatre algorithmes est spécialisé pour une ou deux classes différentes. L’algo-
rithme C4.5 traite au mieux les deux classes « jun » et « spa », tandis que XCS5 classifie correctement
tous les exemples de « lim » (Limonium Narbonense) et « wat » (Eau). Les répartitions statistiques des
valeurs des exemples attribués & chaque classe sont trés différentes, donc chaque classe tire profit d’une
représentation particuliére.

Bien entendu, cette étude ne tient pas compte du reste de l'arbre, elle montre simplement qu'’il
est possible d’établir une interprétation pour une partie des régles par rapport aux spectres réels des
échantillons. Nous avons vu, qu’au moins pour cet exemple, ces interprétations sont cohérentes entre
elles, ce qui parait logique en regard des qualités élevées présentées par les différentes méthodes. On
notera cependant des divergences pour chacune, par exemple pour XCS-R qui a tendance & présenter
des contraintes précises, alors qu’elles sont plus relachées pour ICU (la condition joker s’est exprimée
plusieurs fois puisque des canaux ont été annulés et les intervalles sont plus larges en général), sans doute
parce que le nombre de régles et donc de conjonctions avec lesquelles ICU peut exprimer la connaissance
découverte est plus limité.

7.5.2 Comparaison en classification floue

Dans cette seconde partie, nous nous proposons de comparer I’approche floue de ICUX par rapport
a des modeéles connus pour donner de trés bons résultats dans le domaine de la télédétection. Dans
la littérature, la découverte de la composition spectrale des mizels est généralement traitée par deux
méthodes : 'analyse SMA (ang., Spectral Mizture Analysis) et la classification floue [Lucieer et Kraak,
2004; Kriebel et Koepke, 1987].

L’analyse SMA consiste & exprimer la fonction de distribution de réflectance bidirectionnelle? d’une
surface non homogéne comme la somme pondérée des fonctions de distribution des constituants homogénes
de cette surface [Kriebel et Koepke, 1987; Meerkoetter, 1990; Qin et al., 1996]. Malgré sa simplicité, de
nombreux problémes ont été rencontrés avec cette approche, notamment le fait que les modéles ne sont
pas suffisamment robustes pour séparer les fonctions de distribution avec une précision acceptable. De
plus, elle nécessite une intervention humaine pour le choix des pixels purs, ce qui ne la prive pas de toute
erreur [Barnsley et al., 1998].

La seconde méthode est surtout dominée par les modéles probabilistes comme Maximum Likelihood
[Harris et Stocker, 1998] ou les réseaux de neurones, et les modéles géométriques, tenant compte de la
forme des arbres, de la direction et de la distribution de l'illumination du soleil [Ichku et Karnieli, 1996].
Ces derniéres sont beaucoup plus complexes et trés récentes [Lucieer et Kraak, 2004; Ichku et Karnieli,
1996]. La méthode Mazimum Likelihood ne donnant pas de bons résultats avec nos données, nous avons
choisi de comparer notre approche & des réseaux de neurones. Nous avons aussi complété cette étude par
une comparaison avec SVM-R, la version régression des machines & vecteur support (ang., Support Vector
Machines - Regression). Réseaux de neurones et machines a vecteurs supports sont connus pour étre trés
robustes dans ce domaine [Benediktsson et al., 1990; Gualtieri et Cromp, 1998].

Pour avoir une idée sur les performances de ’algorithme ICUX, nous ’avons testé sur trois jeux de
données. Les deux premiers jeux sont deux images de San Felice a des résolutions différentes : le capteur
CASI (image de 754x293 pixels, résolution de 1.3 m? et 6 classes) et le capteur MIVIS (image de 396x170
pixels, résolution de 2.6 m? et 7 classes). Dans ces jeux, la composition de chaque classe experte est
représentée en pourcentage avec une précision de 5%. Le troisiéme jeu est une base de 846 exemples
de véhicules décrits par 18 attributs spatiaux continus (surface, périmétre, compacité, élongation, ...)
qui est disponible sur le site de 'UCI KDD [Blake et Merz, 1998]. Ce dernier jeu a été choisi pour

2Notée BRDF (ang., Bidirectional Reflectance Distribution Function), il s’agit de considérer la fonction de réflectance
d’un objet comme un modéle d’illumination géométrique [Barnsley et al., 1998; Nielsen, 2001].
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ses caractéristiques intéressantes, c’est-a-dire le nombre élevé d’exemples et d’attributs, et la présence
d’attributs continus.

Parameétre Valeur

Taille du jeu de régles 300 individus
Initialisation P. = 20 parties égales
Critére d’arrét 2000 & 5000 générations
Peross 0.70

Pt 0.15
Pmut,cond 0.30

P, mut,int 0.20
Pmut,term 0.40

€ 0.50

Tup 0.10
Opérateur de sélection Ranking direct
Opérateur de remplacement Ranking direct
Nombre d’enfants par génération |P|

Elitisme 1% (fort)

Durée du traitement 20 a 40 min (CPU de 2.5 GHz)

TAB. 7.8 — Paramétres utilisés pour ICUX, voir la section 5.3.1.

Le tableau 7.8 présente les paramétres utilisés lors de 'apprentissage. Certains paramétres, relati-
vement nouveaux par rapport a ceux des algorithmes évolutionnaires classiques, ont été choisis dans les
plages de valeurs qui ont données les meilleurs résultats sur divers jeux de données. Les résultats sur les
ensembles de test (représentant 50% de toutes les données) sont présentés dans les tableaux 7.9, 7.10 et
7.11, en utilisant les mesures de qualité développées dans la section 4.6.1.1.

Qaccur | Qppa Qspe
Neural network | 0.997 ¢ | 0.981 ¢ | 0.931

SVM-R 0.974 0.737 0.499
ICUX 0.972 0.974 0.933 ¢

TAB. 7.9 — Résultats obtenus sur 'image de CASI. Les meilleures notes sont représentées par le symbole o.

Qaccur | Qppa Qspe
Neural network | 0.776 0.645 0.597

SVM-R 0.978 o | 0.782 0.777 ¢
ICUX 0.863 0.855 ¢ | 0.765

TaAB. 7.10 — Résultats obtenus sur I'image de MIVIS.

Pour I’algorithme & base de réseau de neurones, nous avons choisi un taux d’apprentissage de 0.1,
100000 itérations, 1 couche cachée de 7 & 15 neurones, une méthode d’apprentissage incrémentale et une
fonction d’activation sigmoidale symétrique. La couche de sortie représente les valeurs continues attendues
par I’expert et il y a autant de neurones de sortie que de classes & apprendre. Nous avons utilisé la librairie
gratuite en C qui se nomme Fast Artificial Neural Network Library [FANN, 2005]. La topologie choisie
est simple mais efficace (voir le tableau 7.9 qui présente des qualités trés élevées).

Pour l’algorithme & base de machines a vecteur support (SVM-R), nous avons utilisé le noyau Radial
Basis Function dont les paramétres C' et v ont été découverts pour chaque jeu de données & ’aide d’une
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Qaccur | Qppa Qspe
Neural network | 0.722 0.682 0.704

SVM-R 0.898 o | 0.869 o | 0.869 ¢
ICUX 0.619 0.570 0.609

TAB. 7.11 — Résultats obtenus sur la base de données de véhicules.
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F1G. 7.25 — Optimisation des paramétres du noyau de SVM-R pour le jeu de données de CASI.

librairie gratuite en Python et d’un algorithme d’optimisation pas & pas présenté sur le site de la LIBSVM
[Chang et Lin, 2001]. La figure 7.25 présente la stratégie d’optimisation utilisée par le script sur le jeu
d’apprentissage : les paramétres optimaux se trouvent dans le polygone central.

L’image du capteur MIVIS était la plus difficile & traiter pour différentes raisons : quelques bandes
supplémentaires, moins de pixels dans I'image donc moins d’exemples a classifier (& chaque fois ’ensemble
d’apprentissage était constitué de moins de 2% de la totalité de I'image) et enfin les premiéres bandes de
MIVIS sont légérement plus bruitées que pour CASI. On note aussi une performance plus faible sur la base
des véhicules car les valeurs des données se présentent sous une forme groupée, sans relation particuliére
entre les groupes de valeurs (cela est notamment da & l'orientation des différents objets de la base).
L’algorithme ICUX a une qualité moyenne de @), = 0.818 sur les trois jeux, ce qui est comparable a celle
des réseaux de neurones, égale & 0.832. Pour I'image de CASI, la qualité de I’algorithme évolutionnaire
est comparable & celle de SVM-R et s’en éloigne d’un peu plus de 10% pour I'image de MIVIS. Les
performances sont donc trés bonnes, surtout que les paramétres de SVM-R ont été optimisés pour chaque
probléme. Lorsque les valeurs sont regroupées, un systéme & base de disjonctions, comme ICUX, se révéle
étre intéressant. Les résultats de ICUX, méme s’ils sont légérement moins bons que ceux des autres
classifieurs® (en fait, les notes @Qgceur sont seulement 1.5% inférieures aux autres notes sur les images de
télédétection), présentent 'intérét d’étre directement interprétables et d’exposer la connaissance apportée
par les régles & un expert humain, ce que ne peuvent pas faire les réseaux de neurones ou l’algorithme
SVM-R. Parce qu’il illustre bien notre propos, nous présentons le jeu de régles découvertes pour la classe
« bus » de la base de véhicules dans le tableau 7.12. Le nombre de conditions par régle passait de 1 & 4

3Issus, eux aussi, de plusieurs années de développement. La version 1.0 de FANN est disponible depuis novembre 2003
et celle de LIBSVM date d’avril 2000.
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intervalles selon la complexité des données, ce qui est trés faible, et les 18 attributs sont décrits par des
contraintes simples et lisibles.

Attribut | Nombre de conditions | Conditions

1 1 [81.0982; 82.5794]
2 2 [40.5105; 53.1107] V [36.5423; 50.0423]
3 1 (68.0462; 70.7166]
4 1 252.035; 263.525]

18 1 [180.865; 181.952]

TAB. 7.12 — Exemple de régle produite par ICUX pour la classe « bus » de la base véhicule.

7.6 Election au niveau des résultats

Nous sommes arrivés & un point ol nous avions de nombreuses méthodes, associées & un nombre
tout aussi important de paramétres et donc inévitablement de nombreux résultats. Nous cherchions alors
un moyen de :

— pouvoir obtenir un résultat unique, fondé si possible sur une implication homogéne de chaque

méthode dans le résultat final,

— sans masquer les défaillances individuelles, c’est-a-dire, si possible, avoir un retour sur ces méthodes

afin de proposer éventuellement des corrections.

Effectuer une simple moyenne des résultats est donc proscrite. De plus, des approches hybrides
existent [Gancarski et Wemmert, 2005], mais nous souhaitions pouvoir appliquer les méthodes existantes,
et méme éventuellement des classifications déja prétes, détachées des méthodes, supervisées ou non, sans
avoir a retoucher les algorithmes pour les emboiter entre eux (hybridation). Pour résoudre le probléme
des pixels qui sont classifiés differemment par les multiples méthodes de classification existantes, nous
avons développé une solution & base d’élection consensuelle. A titre de synthése pour ce chapitre, nous
la présentons ici avec quelques résultats qui nous semblent intéressants. Dans la partie suivante, nous
commengons par décrire de maniére abstraite la notion de mesure consensuelle.

7.6.1 Mesure consensuelle

Une décision de classification d pour un échantillon P est la dénomination de la classe de cet échan-
tillon par une méthode donnée. D’un point de vue statistique, d peut étre modélisée comme la probabilité
pe qu’a une classe donnée ¢ d’étre affectée a P.

Quand I’étude concerne n classes, d est alors modélisée comme la distribution de probabilité com-
prenant ’ensemble des probabilités (po,...,pi,...,pn) pour toutes les n classes. Pour les méthodes cor-
respondant aux problémes de type hard, ou chaque échantillon est classé uniquement dans une classe, la
valeur d’un élément p; est 1 si I’échantillon est affecté a la classe i et 0 sinon. Pour les méthodes corres-
pondant aux problémes de type soft ou flous, la probabilité p; dépend de ’estimation de la proportion
de la classe i pour cet échantillon.

Lorsque différentes méthodes (M, ..., M,) s’affrontent sur le méme échantillon, la distribution de
probabilité peut étre vue comme un modéle probabiliste indiquant la probabilité qu’a une classe donnée
d’étre sélectionnée pour un échantillon donné. Dans ce cas, chaque élément p; est une moyenne des
probabilités pM assignées par chaque méthode dans leurs distributions respectives.

Un échantillon est dit avoir une bonne qualité de classification quand les décisions concernant sa
classe sont consensuelles, c’est-a-dire qu’'une forte homogénéité est observée dans les distributions de
probabilité.
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Nous allons maintenant introduire les concepts théoriques nécessaires pour mesurer I’homogénéité
d’une telle distribution. Cette homogénéité repose sur le concept d’entropie.

Si P = (p1,p2,.-.,pn) est une distribution de probabilité, alors 'information exprimée par cette
distribution, appelée I’entropie de P, est définie par ’équation :

I(P) == pilog(pi) (7.10)
=0

Moins la distribution est uniforme, moins elle délivre d’information. Si nous considérons que P =
(p1,p2,--.,Pn) est la probabilité de distribution de la classification d’un échantillon dans n classes par
tous les classifieurs, alors la mesure de ’entropie peut étre utilisée comme une mesure de ’homogénéité
de la décision. Trivialement, d’aprés I’équation :

lir%plog(p) =0 (7.11)
p‘)

I1(1,0,...,0) = 0 et 'entropie est comprise entre 0 et log(n), o n est le nombre de classes. Nous
définissions ’entropie normalisée d’une distribution, aussi appelée son homogénéité, par I’équation :

I(P)
H(P) = 7.12
(P)= oyt (7.12)
Dans ce cas, la consensualité peut étre définie par I’équation :
C(P)=1-H(P) (7.13)

La consensualité est maximale quand tous les classifieurs classifient un échantillon donné dans la
méme classe, et minimale quand tous les classifieurs le classifie dans des classes différentes. Cette mesure
est illustrée sur la figure 7.26.

7.6.2 Cartes de consensualité
Dans cette étude nous avons utilisé la mesure C(P) pour produire deux types de cartes distinctes :

La carte de consensualité est une carte dans laquelle chaque pixel P représente la consensualité C(P),
calculée & partir des décisions de classification de chaque classifieur. Les valeurs sont affichées en
niveaux de gris. Par exemple, si tous les classifieurs sont d’accord pour classifier un échantillon
dans la méme classe, le pixel correspondant de la carte sera affiché en blanc (C(P) = 1). Si la
classification de cet échantillon est homogéene (par exemple, deux classifieurs indiquent la classe
"A’, deux autres la classe ‘B’ et les deux derniers la classe 'C’), le pixel correspondant aura une
consensualité faible et sera imprimé en noir (C(P) = 0).

La carte du vote est une classification dans laquelle chaque pixel est affecté a la classe dominante,
d’aprés tous les classifieurs. Chaque pixel est imprimé dans la couleur correspondant a la classe en
fonction d’une légende proposée par I'utilisateur. Si la consensualité d’un échantillon est inférieure
a un certain seuil C,,,, alors le pixel est imprimé en noir, signifiant « non classifi¢ ». Un seuil de
0.5 a été choisi arbitrairement pour les figures qui vont suivre.

Une autre statistique a été proposée & partir de la carte de consensualité. Il s’agit d’un histogramme
qui indique pour chaque catégorie de valeurs dans la carte, le pourcentage correspondant de pixels.
Les valeurs en abscisse de cet histogramme sont généralement prises par pas de 0.1 points, c’est-a-dire
[0;0.1[;[0.1;0.2[;...; [0.9; 1.0], mais d’autres échantillonnages peuvent étre employés. Cet histogramme
peut étre utilisé comme post-validation de la carte de consensualité et constitue une preuve importante
de sa qualité. Le nombre de pixels le plus élevé doit se situer dans le dernier intervalle. L’analyse de cet
histogramme peut permettre de faire des conclusions intéressantes. Par exemple, si l'intervalle [0.9;1.0]
est maximal et qu'un maximal local est observé dans l'intervalle [0.5;0.6], nous pouvons conclure qu’il
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Fi1G. 7.26 — Comparaison de différentes valeurs de consensualité.

y a principalement deux types d’échantillons : ceux qui sont consensuels, et ceux qui ne le sont systé-
matiquement pas & raison d’un choix ambigu entre deux classes. L’identification de ces classes peuvent
conduire & ’exclusion de certains classifieurs ou au rajout de suffisamment d’informations expertes pour
améliorer la qualité de I'histogramme. L’analyse des résultats & la lumiére d’un seul classifieur, dans une
démarche non collaborative, ne permettrait pas de telles identifications.

7.6.3 Illustration

En plus de la carte consensuelle, nous présentons ici un comparatif des différents résultats que nous
avons pu obtenir, issus d’un travail collaboratif induit par le projet TIDE. Le tableau 7.13 indique la liste
des classifieurs sélectionnés pour cette étude.

Les résultats des classifieurs sont présentés de maniére indépendante sur la figure 7.27. Nous pouvons
y voir que de nombreuses zones ne sont pas toutes classifiées a 'identique, notamment pour les zones de
végétation situées au nord-est. La figure suivante (figure 7.28) montre la carte du vote : de nombreux
pixels ont pu étre votés, le nombre de pixels noirs étant trés faible. Ces pixels non consensuels se situent
surtout en bord de mer, en effet, la végétation y est extrémement mélangée. La figure 7.29 montre la
carte de consensualité. Les pixels grisés sont les plus difficiles & classifier. On remarque que la région
du nord-est, surtout constituée de plantes fines, couvrant un sol trés humide voire inondé, est la moins
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Nom Supervisée ? | Floue ? | Paramétres Forme des résultats Durée CPU (3 GHz)
C4.5 Oui Non Confiance (0.25), feuilles (3) Arbre de décision Courte (5 min)

ICU Oui Non Population (50 & 200), générations (100 & | Reégles de classification Moyenne (30 min)
500)
ICUX Oui Oui Population (100 & 300), générations (200 & | Reégles de classification Longue (1h)
1000)
XCS-R Oui Non Population (2000 a 3000), générations | Reégles de classification Longue (1h)
(200000)
MLP* Oui Oui Topologie (5 & 15 neurones cachés), itéra- | Réseau de neurones Moyenne (30 min)
tions
SAM? Oui Non Seuil (0.1 rad) Angles Courte (2 min)
K-Means Non Noyaux (15 a 20) Classif. réaffectée Courte (10 min)
SOM*® Non Taille de la fenétre (3x3 a 5x5) Classif. réaffectée Courte (10 min)

@ Multi-Layer Perceptron
bSpectral Angle Mapper [Yuhas et al., 1992]
©Self-Organizing Map [Kohonen, 1982]

TAB. 7.13 — Classifieurs utilisés pour I’élection d’un résultat consensuel.

F1a. 7.27 — Classifications de I'image de CASI par différents classifieurs. De gauche & droite, puis de haut
en bas : (a) C4.5, (b) ICU, (c¢) ICUX, (d) XCS-R, (e) MLP, (f) SAM, (g) K-Means (15 classes), (h) SOM
(fenétre 4x4).

consensuelle. Heureusement, le sol et ’eau ne représentent pas des classes intéressantes pour le projet
TIDE. L’histogramme de la figure 7.30 nous apprend qu’une grande majorité de pixels (plus de 40%)
sont pleinement consensuels et les dix classifieurs ont pu fournir une expertise efficace sur plus de 70%
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Fia. 7.29 — Carte de consensualité pour CASI.

de Iimage (C(P) > 0.5). Il faut cependant noter que la majorité des pixels ayant une consensualité
maximale correspondent & ’eau, plus facile & discriminer que la végétation.

Ces résultats sont trés encourageants et surtout surprenants car ils ont été générés par des méthodes
trés diverses, avec des paramétres et des jeux d’apprentissages différents (par exemple, certaines mé-
thodes nécessitaient seulement quatre pixels pour ’apprentissage, alors que pour d’autres, il en fallait
quelques centaines). La technique que nous avons développée, basée sur ’entropie, permet donc d’unifier
efficacement une dizaine de classifieurs différents, en présentant un résultat final plutét homogéne.
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Conclusions et perspectives

Travaux et contributions en évolution artificielle

Nous avons mené & bien une étude sur la découverte de régles de classification des concepts théma-
tiques contenus dans une image de télédétection. Cette étude a constitué d’une part en la définition de
représentations adaptées a ce processus de découverte et d’autre part, en l'intégration de ces représen-
tations au sein de plusieurs systémes d’apprentissage, coiffés par une architecture évolutive générique.
Les connaissances découvertes sont stockées dans des bases de régles indépendantes et réutilisables. Les
objectifs qui ont été définis dans la problématique ont été atteints. Les algorithmes mis au point sont ro-
bustes et efficaces, comme nous I’avons montré dans les différentes études de cas. Nous avons montré que
les représentations choisies, plates ou arborescentes, sont & la fois pratiques et simples pour I'utilisateur,
et suffisamment expressives pour assurer une qualité de généralisation assez élevée. A cette intention,
nous avons validé certaines étapes clés.

La premiére étape consistait en ’étude théorique de représentations de classifieurs spécialisés dans
le traitement d’images multispectrales ou hyperspectrales, permettant d’intégrer toutes les informations
nécessaires au traitement de données d’une complexité aussi importante. Pour obtenir des classifieurs
adaptés & ce domaine d’application, il a fallu imaginer des structures capables d’apporter une solution
efficace au probléme posé, tout en gardant une certaine simplicité (ergonomie, lisibilité, présentation du
résultat, etc.) vis-a-vis de l'utilisateur. Aprés une étude de l'existant qui a orienté la composition d’une
liste de critéres intéressants pour ’expert, nous avons considéré différentes représentations, utilisant des
opérateurs booléens ou des opérateurs mathématiques qui ont respectivement donné accés & la résolution
de problémes de classification de type soft ou flous. Nous avons donc créé des régles symboliques & base
de conjonctions de disjonctions d’intervalles, d’arbres de décision ou d’arbres de calcul, garantissant du
méme coup leur applicabilité & des problémes de classification variés : hard, soft, flous ou méme par
intervalles flous. Puis nous avons montré que le comportement de base de ces régles était & méme de
saisir les particularités de I’environnement étudié, par exemple le cas des interstices spectrauxr observés a
des degrés d’humidification divers de la végétation (section 5.3.1.5).

Ces classifieurs, nouveaux dans leur genre, nécessitent I’emploi d’un systéme permettant de les ma-
nipuler de maniére adéquate. La deuxiéme étape nous amena donc & étendre la stratégie proposée par les
systémes de classification habituels pour réaliser deux objectifs. D’une part, il fallait intégrer, dans notre
architecture, de nouveaux opérateurs génétiques spécialisés pour chacune des représentations. D’autre
part, il fallait traiter les échantillons d’apprentissage avec une fonction d’évaluation offrant une pression
de sélection efficace, combinant la qualité de décision des régles, la briéveté et la généricité de leur repré-
sentation avec les contraintes de 'utilisateur. C’est ainsi que nous avons étudié puis réalisé des opérateurs
adaptés & Uinitialisation de classifieurs évolutifs (procédures GenMinMax et GenSpectro de ICU, & base
de mizels pour ICUX, & base de grammaires pour GramGen, etc.), & leur croisement et leur mutation,
a la détection de convergence (par exemple, par stabilisation de la fonction fitness) ou a leur sélection.
En conséquence, nos travaux ont permis 1’élaboration d’un modéle possédant une grande adaptabilité et
ce & plusieurs niveaux. Tout d’abord il permet d’aborder des images possédant un nombre quelconque de
dimensions spatiales, spectrales et radiométriques, et de qualité inégale (bruit, expertise succincte, etc.).
Ensuite, il autorise 'intégration future de régles plus puissantes de facon cohérente avec le reste du sys-
téme. Enfin, 'application dans d’autres domaines, tout aussi hostiles aux classifications traditionnelles,
est envisageable malgré la présence d’opérateurs spécialisés.

155
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La troisiéme et derniére étape était de proposer un processus de validation de confiance, permettant
aussi bien de sélectionner les régles lors de 'apprentissage, que de les évaluer a la sortie des algorithmes.
Ce processus est concrétisé par différentes mesures de qualité (précision, sensibilité, spécificité, etc.)
spécifiques aux données ou & la représentation (mesures de taille ou de diversité d’une population d’arbres),
ainsi que par des protocoles de validation (holding-out, cross-validation, bootstrapping et jackknifing).
Nous les avons complétés par des mesures de validation graphique (carte de recouvrement, spectrogramme,
méthode RuleView, cover-graph et courbes ROC). Cette validation a donc pu se poursuivre aussi bien
tout au long de lapprentissage (évolution de la spécificité, tuning) qu’en post-validation, permettant
d’apprécier la pertinence et la facilité d’interprétation des régles trouvées [Quirin et al., 2004].

Apports pratiques en classification d’images de télédétection

Les résultats présentés dans le dernier chapitre de ce mémoire sont trés encourageants, par rapport
aux difficultés posées par le contenu trés riche de ces images et par la qualité variable de ’expertise.
Cette derniére peut en effet souffrir, par son caractére humain ou systématique, de problémes de bruit,
de pixels mixtes ou de bordures mélangeant toutes les combinaisons de classes possibles. Cependant nous
avons prouveé, par les expérimentations, que notre systéme se révélait étre trés robuste, par exemple, en
retrouvant le contour des régions d’intérét fixé par expert (section 7.3.1) et méme en découvrant des
indices génériques, comme NDVI ou I, ce qui apporte une valeur ajoutée a la classification.

L’étude de cas a permis de dégager plusieurs points intéressants. Les structures proposées par ICU
et XCS-R, malgré leur simplicité, reproduisent fidélement la réalité [Quirin et al., 2005]. Nous avons vu
qu’un pool appris en situation de classification soft peut étre converti et utilisé en situation de classifi-
cation hard par I’addition, & la base de régle, d’une stratégie de sélection des régles en cas d’activation
multiple (recouvrements) ou de classes non apprises, permettant ainsi I'attribution sans équivoque de
chaque élément de I'image a la classe qui lui est la plus proche. Ainsi, les stratégies a base de cartes
de recouvrement (pour ICU) et les méthodes MazConfident et ScoreConfident (pour XCS-R) ont été
créées et testées dans ce but [Quirin et Korczak, 2005a]. Nous avons aussi vu comment nous pouvions
répondre aux paradigmes émergents, comme celui de 'unmizing (classification floue), en proposant une
fonction de correspondance (ang., matching) régle-échantillon particuliere (ICUX, [Quirin et Korczak,
2005b]) ou deux systémes & base de programmation génétique (ProgGen et GramGen), contraints par
probabilités ou grammaires pour ne pas faire exploser I’espace de recherche. Enfin, nous avons proposé
plusieurs méthodes de raffinement de la base de régles, par post-traitement génétique (réduction, trans-
formation ou recombinaison de la base), extraction de fonctions d’appartenance permettant de préciser la
formation de niches dans XCS-R et extraction d’un arbre de décision (XCS5). Nous avons notamment
observé, lors d’une étude comparative entre XCS5 et ICU, que ces algorithmes délaissent les canaux
inexploitables ou inutiles tout en présentant des résultats cohérents.

Finalement, ces travaux ont donné lieu a un prototype, nommé VPlat (voir ’annexe F), exploitant
tous les algorithmes étudiés, dans le but de tester leur validité sur des exemples concrets, mais aussi de
proposer un outil convivial, diffusant la connaissance acquise & des équipes non spécialisées dans I’infor-
matique, qui seraient intéressées par nos résultats. Cet outil accomplit la chaine compléte du traitement
des données, depuis la visualisation des images hyperspectrales jusqu’a la production de descriptions de
classes compréhensibles en passant par 'obtention d’images classifiées. L ’architecture modulaire basée sur
le paradigme objet permet l'intégration rapide de nouvelles méthodes, actuelles ou & venir, simplement
en ajoutant une classe de fonctions spécifiques au nouvel objet. Elle facilite aussi la compréhension du
systéme, 'utilisateur y gagne donc lors de son paramétrage. Ce prototype a été présenté avec intérét a
I’équipe Télédétection, Radiométrie et Imagerie Optique du LSIIT et au laboratoire Image et Ville de
Strasbourg (dans le cadre de 'ACI Masse de données), avec lesquels nous avons tissé des liens depuis
longtemps. Les méthodes d’apprentissage évolutives ICU, XCS-R, ICUX et GramGen, ainsi que le
systéme de sélection des résultats & base de carte de consensualité et de carte de vote sont utilisés ac-
tuellement pour le défrichage des données de ’année 2004, avant la conclusion du projet européen TIDE
[TIDE, 2005], qui par son enjeu et la nature des sommes investies, requerrait un prototype fonctionnel et
applicable rapidement.

Perspectives

Les algorithmes évolutifs, et donc les algorithmes évolutionnaires et les systémes de classifieurs que
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nous avons employés, sont connus pour étre cofiteux en temps et en mémoire car ils nécessitent des
populations de grande taille. Une premiére perspective pour nos travaux pourrait étre I’optimisation
de leur temps de calcul. Par exemple, nous pouvons optimiser la découverte des arbres de calcul dans
ProgGen et GramGen en optimisant les valeurs des constantes des arbres (ang., tuning) toutes les
n générations, ou en utilisant les fonctions automatiquement définies (ADF'). Outre 'optimisation des
algorithmes eux-mémes, la parallélisation est une piste qui peut se révéler fructueuse pour le gain de
temps. Les algorithmes & base de populations de régles se prétent naturellement & la parallélisation et
celle-ci a été étudiée largement dans la littérature. Le transfert de la charge de travail sur un ou plusieurs
postes serveurs représente un autre intérét des systémes distribués car ils peuvent dés lors étre présentés
sous forme de service a I'utilisateur (réseau local, réseau Internet).

Nous sommes aussi conscients que la représentation des régles évoquée ici n’exprime, par des ex-
pressions réduites & leurs formes normales, qu’une connaissance spectrale. Afin d’inclure d’autres types
de connaissances existantes et pertinentes dans le domaine d’étude (relations spatiales ou temporelles)
il faudrait étendre notre formalisme de représentation pour y inclure des concepts sémantiquement plus
riches comme la forme des objets, leur texture, etc. et de dépasser le niveau du pixel en proposant des
connaissances de niveau région. Mais bien au-dela, les classifications contextuelles permettraient la for-
mation de concepts thématiques puissants, & I'image de prédicats du premier ordre (« tout échantillon
de végétation est entouré d’échantillons de non-eau ») ou de prédicats flous (« un arbre isolé est souvent
de forme ronde et de petite taille », « un pavillon est rarement au bord de ’autoroute », etc.). D’autre
part, l'utilisation de grammaires temporelles permettant ’exploitation de séquences d’images augure, elle
aussi, de perspectives intéressantes. Ce formalisme trés ouvert exigera des opérateurs génétiques et une
représentation appropriés, capables de regrouper des régions de pixels ou de découvrir des relations entre
les séquences de valeurs, autorisant la mise a jour de connaissances de la base de concepts, qu’elle soit ra-
diométrique, spatiale ou temporelle. L’inclusion au préalable de toutes ces méta-connaissances améliorera
les performances actuelles de notre systéme et renforcera notre savoir et notre expérience en télédétection.

Notons que cette mise & jour ne pourra sans doute pas s’effectuer depuis une unique source de don-
nées. L’absence d’un traitement direct des données multi-sources et multi-échelle devra étre comblée : de
nombreux moyens sont d’ores et déja disponibles et ce type de traitement présente un intérét certain dans
la communauté des géographes. Cette problématique, ainsi que celle de 'utilisation d’opérateurs théma-
tiques plus poussés (morphologiques, contextuels, etc.), s’inscrira immanquablement dans la continuité
de nos travaux, d’autant plus qu’elle fait partie du cadre du projet FoDoMust de ’ACI Masse de données
qui se poursuit actuellement, et qui promet une collaboration étroite entre informaticiens, géographes et
spécialistes du traitement d’image, caution de la mise en place harmonieuse de toutes ces briques.

Enfin, d’autres perspectives pourraient étre envisagées, parmi lesquelles une interactivité plus pous-
sée entre l'utilisateur et le systéme VPlat (visualisation de la population en cours d’apprentissage, mar-
quage d’exemples ou de contre-exemples en dessinant directement sur l'image pendant une pause de
I’algorithme, manipulation de points d’arrét en posant des contraintes sur différents paramétres internes
de l'algorithme, etc.) ou bien une hybridation des algorithmes d’apprentissages (un arbre obtenu par
GramGen sélectionne les résultats de plusieurs méthodes évolutives ou non en fonction de la classe
étudiée ou des données observées). Nous le voyons, de nombreux problémes restent ouverts, tant dans
I’amélioration des représentations que dans celle des algorithmes qui les manipulent.
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Annexe A

Rappels sur les algorithmes
connexionnistes

De part la simplicité de leur fonctionnement, leur disponibilité trés tot dans la communauté et leurs
performances souvent correctes, les réseaux de neurones ont maintes fois été appliqués en télédétection. Un
réseau neuronal est un ensemble de cellules de calcul appelées neurones, connectées par des liens nommés
connezions portant chacun un poids et modifiant la valeur des données transitant entre les entrées du
réseau et ses sorties [Rosenblatt, 1962]. Les attributs explicatifs (en entrée) sont souvent appelés variables
exogénes, tandis que ceux & prédire sont dénommeés variables endogénes (en sortie). Ces réseaux font partie
de la grande famille des mémoires hétéro-associatives [Williams et Zipser, 1989], c’est-a-dire qu’ils peuvent
apprendre & associer certains concepts & d’autres. Généralement en télédétection, on voudrait pouvoir
associer une couleur, une forme, la densité d’une zone de points & une représentation conceptuelle de
cette zone (végétation, ...). On donne donc & ces algorithmes un ensemble de paires de valeurs (entrée et
sortie souhaitée) et 'apprentissage découvre une fonction déterministe qui fait correspondre les entrées
sur les sorties, en minimisant les conflits qu’il peut y avoir sur de nouvelles présentations de paires. Voici
un parcours de quelques types d’algorithmes connexionnistes existant.

A.1 Perceptrons MultiCouches

Les Perceptrons Multi-Couches (PMC) [Rumelhart et al., 1986] permettent de séparer les données
par des hyperplans. Dans ce cas, le réseau détermine la classe d’un objet présenté en entrée en fonction
de son appartenance A la région supérieure ou inférieure situées de part et d’autre de ’hyperplan. Plu-
sieurs algorithmes d’apprentissage ont été développés calculant ’ajustement du poids des connexions. Ils
utilisent dans la plupart des cas I'une des deux stratégies évoquées ci-dessous :

— La régle de Hebb [Hebb, 1949] basée sur l'interprétation suivante : si deux neurones de chaque
coté d’une connexion sont activés simultanément, le poids de la connexion va augmenter. La régle
est la suivante :

wi = wf}d + e;s; (A1)
ol wif* est le nouveau poids de la connexion du neurone i au neurone j, wi
e; est la valeur de 'entrée du neurone et s; la valeur de sa sortie.

— D’autres variantes existent comme par exemple la régle de Hebb avec taux d’apprentissage (la forme
classique), avec terme d’oubli [Gluck et Thompson, 1987] ou la régle de Widrow-Hoff, [Widrow et
Hoff, 1960]. Ces régles ajoutent des termes supplémentaires qui adaptent les poids des connexions
de maniére & obtenir la convergence la plus efficace possible.

L’algorithme le plus couramment utilisé qui manipule de telles régles est celui de la rétro-propagation

du gradient (ang., back-propagation) [Rumelhart et al., 1986], décrit aussi par [Fodor et Pylyshyn, 1988].

est son ancien poids,
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A partir d'une base d’exemples (paires de valeurs pour les entrées et les sorties désirées), I’algorithme
calcule I'erreur du réseau a partir de la corrélation entre les exemples donnés et les sorties attendues.
Ensuite, les poids des connexions sont modifiés en fonction de la part qu’occupe chaque connexion dans
Perreur globale. Cet algorithme est généralement utilisé pour les réseaux de type multi-couches (ayant
au moins une couche cachée) : dans ce cas, on propage en arriére (depuis les neurones de sortie vers
les neurones d’entrées) ’erreur calculée sur les neurones de sortie. Les PMC ont été trés tot utilisés en
classification d’images et donnent de bons résultats [Manry et al., 1994; Jiang et al., 1994]. On peut aussi
citer les travaux de [Liu et al., 2001] concernant la récupération de canaux hydrauliques urbains sur une
image DOQQ (ortho-photo) de 6200x7800 pixels.

A.2 Reéseaux HyperConvexes

Les réseaux HyperConvexes, introduits par [Novak, 2000] définissent un nouveau type de neurone
utilisant le principe des polygones de Thiessen [Blekas et al., 1997], pour délimiter l’espace en régions
géométriques rectangulaires ou sphériques. Cette famille de réseaux a été améliorée, toujours en vue de les
appliquer a la télédétection, par [Grzelak, 2001] en ajoutant la détection de zones ellipsoidales (orientées
ou non). Grace a ces réseaux, on peut mieux délimiter la région de l’espace concernée par ’activation des
neurones, ce qui en font des systémes plus précis. Ces réseaux ont de bonnes capacités en télédétection
et, de surcroit, I’apprentissage est rapide.

A.3 Réseaux RBF

Les réseaux RBF (Radial Basis Function) [Powell, 1985; Boser et al., 1992] sont des réseaux qui
permettent de modifier les poids des connexions uniquement de maniére locale. Ceci est intéressant dans
le cadre de la reconnaissance de forme ou dans la télédétection ou il faut inculquer au réseau que les
pixels adjacents & un pixel donné jouent un roéle trés important durant l'apprentissage, tandis que les
pixels trop éloignés ne doivent pas intervenir. Une telle méthode d’apprentissage est développée dans
[Blanzieri, 1998]. Elle est par exemple utilisée pour découvrir une douzaine de classes sur une images
multispectrale [Luo et al., 2001] avec une meilleure précision comparée aux Perceptrons classiques.

A.4 L’algorithme Cascade Correlation

L’algorithme Cascade Correlation (CasCor) caractérise plutot une architecture de traitement qu'un
type réseau [Fahlman et Lebiere, 1990]. L’architecture est de type matricielle : les signaux ne passent
pas obligatoirement par la couche cachée depuis les neurones d’entrée vers les neurones de sortie, car
les neurones sont tous reliés entre eux. Principalement deux idées y sont implémentées : la premiére
est d’ajouter des neurones dans la couche cachée (neurones candidats) en les entrainant un par un. La
seconde concerne ’entrainement lui-méme : il s’agit de maximiser la covariance entre la sortie du candidat
et Uerreur résiduelle du réseau en modifiant les poids entre le neurone inséré et les autres neurones. Une
fois entrainés ils ne changeront plus, ce qui évite le probléme d’instabilité des poids (ang., moving target
problem) rencontré dans les PMC.

Outre le principe d’apprentissage incrémental, le principal avantage réside dans le fait que ces réseaux
sont capable d’apprendre eux-méme leur topologie. Leur rapidité leur permet de traiter de grandes bases
de données, par exemple 'imagerie d’un tera-octets de la Nasa pour la mission MTPE! dans laquelle il faut
détecter et quantifier la présence de nuages [Blonda et al., 1993]. Sur un jeu de données, la performance de
Palgorithme CasCor a dépassé les 99.8%, méme si les auteurs reconnaissent avoir utilisé une image simple
(nuages ou océan). Une étude plus récente [Diverio et al., 2002] fait état, quant & elle, de performance
moindre (69%) pour une image Landsat de 5 canaux lors de la discrimination de 6 classes.

IMission To Planet Earth.



Annexe B

Machines a Vecteur Support

On attribue & Vapnik [Boser et al., 1992; Vapnik, 1995; Cortes et Vapnik, 1995] le fait d’avoir dés
1992 rassemblé différentes notions mathématiques (mazimal margin hyperplanes, la théorie des noyaux, ...)
pour la fondation de la théorie des machines a vecteur support (ang., Support Vector Machines ou SVM).
Elles sont utilisées dans la découverte de fonctions a partir d’'un ensemble de données labellisées, que ce
soit pour de la classification ou de la régression. Il s’agit de séparateurs linéaires : leur principe est de
trouver un hyperplan séparant un hyperespace F de fagon & maximiser la marge entre les données et
E. Tls nécessitent la définition de plusieurs paramétres, et malgré le fait que certaines études se soient
concentrées sur des méthodes de choix du noyau en fonction de la connaissance du domaine [Brailovsky
et al., 1999], ils restent relativement difficiles & comparer. Ces paramétres sont notamment : C > 0, le
paramétre de pénalité pour le terme d’erreur, le noyau ainsi que tous les paramétres qui lui sont associés.
Par exemple, 'un des noyaux les plus performants est la gaussienne RBF (ang., Radial Basis Function) :
K(z,xj) = e~Mzi=2;1” avec le paramétre v > 0.

En télédétection, la robustesse des SVM a surtout été utilisée pour classifier des images souvent
bruitées et complexes (parfois plusieurs centaines de canaux représentant une dimensionalité importante
pour les données). Dans certains cas, les SVM n’utilisent que 5% des données d’apprentissage [Brown et al.,
1999], ce qui présente 'avantage de réduire fortement 'effort de validation sur ces points. Par exemple,
cette méthode a donné de meilleurs résultats que ML! (ang., Maximum Likelihood) sur des données
hyperspectrales DAIS, tout en réduisant le phénomeéne de Hugues? [Pal et Mather, 2004]. Dans une autre
étude [Gualtieri et Cromp, 1998], des performances moyennes 4 hauteur de 96% pour un probléme de 4
classes et de 87% pour un probléme de 16 classes ont été obtenues pour des images hyperspectrales de
plusieurs centaines de canaux.

Enfin, nous devons citer une étude publiée dans [Brown et al., 1999] utilisant la capacité de régression
des machines a vecteur support (SVM-R). Il s’agissait de retrouver l'information au niveau du sous-pixel,
lorsque les spectres de deux ou plusieurs classes® se recomposent dans le méme pixel, c’est-a-dire de
prédire les proportions de différentes classes pures & partir de la composition spectrale connue des pixels
d’apprentissage. Les auteurs montrent que les performances de SVM-R sont au-dessus celles obtenus par
les modéles linéaires existant jusqu’alors (ang., Linear Spectral Mizture Model ou LSMM).

I1.’algorithme ML est un algorithme supervisé classique en télédétection implémenté dans de nombreux logiciels com-
merciaux, comme ENVI

2D’une maniére générale, la qualité de classification augmente rapidement avec le nombre de canaux utilisés parmi ceux
de I’image initiale, puis baisse progressivement a mesure que 1’on s’éloigne d’un certain seuil, quel que soit la taille du jeu
d’apprentissage. Ce phénomeéne a été décrit par Hugues en 1968 [Hughes, 1968].

3Un ensemble d’exemples (ici de pixels) étiquetés de la méme fagon.
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Annexe C

Fonctions génétiques

Dans cette section, nous présentons succinctement le role et les choix qui ont été effectués pour les
opérateurs génétiques principaux. A vocation théorique, elle ne développe que les aspects communs qui
concernent 'implémentation de ces opérateurs, qui seront plutot détaillés dans les sections suivantes. Le
lecteur intéressé consultera a profit Goldberg [Goldberg et Sastry, 2001], Michalewicz [Michalewicz, 1996]
et Eiben [Eiben et Smith, 2003].

C.1 Fonction d’évaluation

La fonction d’évaluation calcule une note pour chaque individu et représente le noyau d’un algo-
rithme évolutionnaire [Mitchell et al., 1991]. Dépendante fortement du domaine d’application et du type
de probléme, elle est & déterminer avec soin. Par exemple, en classification hard ou soft, la fonction
d’évaluation tient compte & la fois du nombre d’exemples pour lesquels la régle s’active lorsque la classe
correspond et le nombre d’exemples pour lesquels la régle ne s’active pas lorsque la classe ne correspond
pas. En classification floue ou par intervalles flous, la fonction d’évaluation tient compte d’une corrélation
entre le pourcentage attendu par l’expert et celui calculé par la régle.

La fonction fitness F; d’'un individu ¢ mesure ’adaptation ou la performance de cet individu par rap-
port aux autres. Elle est calculée & partir de ’évaluation de I'individu donnée par la fonction d’évaluation

fi:

fi
2

Dans un algorithme évolutionnaire, la fonction fitness est utilisée comme moyen de pression sélective
sur les individus et guide le parcours de ’espace de recherche.

F = (C.1)

C.2 Opérateur d’initialisation

La génération de la population initiale est I'une des étapes les plus importantes dans un algorithme
évolutionnaire. Quelque soit le pouvoir de découverte des opérateurs génétiques, il n’est jamais bon de
leur proposer un pool initial trop proche de la solution & trouver. Il y a principalement deux critéres a
prendre en compte lors de cette initialisation :

— la proximité du pool de départ avec une bonne solution et

— l'obtention d’un pool diversifié, sans quoi la population serait homogéne : notons que si la dis-

tribution des individus n’est pas assez uniforme ’algorithme risque de converger prématurément
sans avoir trouvé de bonne solution.

La création d’un individu initial Iy & partir d’exemples d’apprentissage est la premiére phase de
la création de la population initiale. L’individu Iy est ensuite dupliqué jusqu’a former une population
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compléte. Dans le cas d’une initialisation standard, la création des individus est aléatoire, pour tenter
d’ensemencer I’espace de recherche de maniére uniforme.Enfin, la population est évaluée puis triée avant
le premier cycle generationnel. L’opérateur de création d’un individu initial étant spécifique & chaque
algorithme, nous en avons donné le détail dans le chapitre 5.

C.3 Création de la nouvelle population

D’une maniére bréve, cette population initiale évolue en d’autres populations, qui se substituent les

unes aux autres, a travers une succession de générations, jusqu’a un critére d’arrét. La procédure standard
pour créer la population de la génération suivante & partir d'une population de parents est la suivante :

1.

Déterminer NbEnfantsParGeneration, le nombre d’enfants que I’on souhaite créer (potentiellement
différent de la taille de la population).

NbEnfants = 0

Tant que NbEnfants < NbEnfantsParGeneration, faire :

(a)
(b)

(f)

Sélectionner le type de l'opérateur & appliquer, soit le croisement, soit la recopie, avec une
probabilité de 80 & 100% pour l'opérateur de croisement.

Si le croisement est choisi, piocher deux (ou n dans le cas d’un opérateur n-aire!) individus
dans la population des parents en utilisant une méthode de sélection avec remise (un individu
avec une fitness élevée peut donc étre sélectionné plusieurs fois). Effectuer le croisement avec
les parents sélectionnés, pour obtenir n enfants.

Si la recopie est choisie, piocher un individu en utilisant une méthode de sélection avec remise,
le cloner pour obtenir un enfant.

L’opérateur de mutation est ensuite appelé sur chacun des enfants créés par les opérateurs que
nous venons de citer. Chaque géne de ces individus est soumis & la probabilité de mutation.
Par exemple, un individu représenté par un vecteur de 100 bits et soumis & une probabilité
de mutation de 1%, subit en moyenne une mutation. Si I'enfant provient d’une recopie et
qu’aucune mutation n’a été effectuée, récupérer la valeur d’évaluation du parent dont ’enfant
est le clone, pour gagner du temps.

Les opérateurs de variation (croisement et mutation) peuvent étre suivis d’'un opérateur de
validation des enfants, dont le role est de réduire au mieux le nombre d’évaluations d’individus
incohérents (perte de temps). Il y a plusieurs stratégies possibles :

— Corriger directement les individus incohérents. Il n’y a souvent pas lieu d’en faire un opéra-
teur a part. Si cette correction est directement intégrée a ’opérateur de variation, on parle
de macro-mutation (ou de macro-croisement). Dans certains cas, qui nécessitent une fonc-
tion d’évaluation complexe, il n’est pas possible d’effectuer de telles corrections sans cofit
de calcul prohibitif et redondant. De plus, de telles corrections sont parfois difficiles, voire
impossibles a réaliser.

— Supprimer les individus incohérents. Cette stratégie s’apparente & la suivante, car comme
l’algorithme boucle tant que le nombre d’enfants NbEnfantsParGeneration n’a pas été
atteint, & lissue de la génération de la population d’enfants, tous les enfants sont valides,
quitte & ce que la création de la génération d’enfants prenne du temps.

— Donner une trés mauvaise évaluation aux individus incohérents. Contrairement aux deux
premiéres, cette stratégie est trés rapide, et fait confiance & 'algorithme de remplacement
pour séparer le bon grain de l'ivraie.

NbEnfants est incrémenté du nombre d’individus effectivement insérés dans la population des
enfants.

In individus sont exploités lors de la création d’un enfant, avec n > 2.
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4. La fonction d’évaluation est appelée sur les individus dont 1’évaluation est & mettre a jour (c’est-a-
dire ceux qui ne sont ni clonés, ni pénalisés par 'opérateur de validation).

5. Nous disposons & présent d’une population de parents P, et d’une population d’enfants P’, tous
évalués. La création de la population de la génération suivante peut étre précédée d’'une étape de
sélection élitiste (forte ou faible), au choix de 'utilisateur. Cette méthode de sélection est particuliére
car elle peut s’employer quelque que soit la stratégie de remplacement retenue (étape suivante).

— Dans le cas de I’élitisme fort, on déplace autoritairement le meilleur parent de P vers la nouvelle
population sans se poser de question.

— Dans le cas de ’¢litisme faible, on fait les choses de maniére plus intelligente : on déplace le
meilleur individu de la population P U P’ vers la nouvelle population.

6. Tant que la taille de la nouvelle population est inférieure a la taille souhaitée, choisir un individu
parmi la population P U P’ par un opérateur de sélection choisi pour cette procédure (nommée
remplacement) et le déplacer dans la nouvelle population (remplacement = sélection sans remise).

7. Renvoyer la nouvelle population.

On distingue donc deux occasions lors desquelles un opérateur de sélection s’applique : la sélection des
parents et la sélection de la génération suivante (remplacement des survivants). La sélection des parents
pioche le matériel génétique nécessaire a 'application des opérateurs de variation que nous verrons dans
les deux sections suivantes, c’est-a-dire 'opérateur de croisement et ’opérateur de mutation.

Les stratégies de sélection peuvent étre similaires ou différentes pour les opérateurs de sélection des
parents et de remplacement, mais le tirage se fait avec remise dans le premier cas, et sans remise dans le
second cas. Ces stratégies seront présentées dans la section C.6.

C.4 Opérateur de croisement

L’opérateur de croisement (ang., crossover) est utilisé afin d’exploiter la connaissance acquise par les
individus de la population courante. Fondé sur le fonctionnement biologique du croisement, il fonctionne
par ’échange du matériel génétique entre les deux parents. Si les deux reproducteurs sont meilleurs que
la moyenne, on fait ’hypothése [Vose, 1999] que le mateériel génétique résultant contiendra une copie de
génes performants et sera transmis aux enfants. A noter que si 'on choisit toujours les meilleurs parents,
on risque une perte de diversité pouvant amener & une convergence prématurée (d’ou le choix d’un
algorithme de sélection avec une pression de sélection modérée). De plus, le croisement peut découvrir
des combinaisons non présentes dans la population des parents, ce qui n’est évidemment pas le cas lorsque
I’on se borne & recopier les meilleurs individus dans la population des enfants. L’appel a la fonction de
croisement pour créer un nouvel individu se fait avec une probabilité de 80 & 100%. La figure C.1 illustre
de maniére graphique cet opérateur.

Croisement

binaire

q

Fic. C.1 — Exemple de I'application d’'un opérateur de croisement uniforme binaire.

L’opérateur de croisement ne suffit pas pour l'exploration efficace de ’espace de recherche : no-
tamment ’opérateur est incapable de créer un matériel génétique nouveau. Cet objectif est réalisé par
I’opérateur de mutation.
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C.5 Opérateur de mutation

La mutation provoque un petit nombre de modifications mineures et aléatoires au sein des génes
d’un individu. Idéalement, l'opérateur de mutation doit étre fabriqué de telle sorte qu’'un nombre fini
d’opérations permette d’atteindre tout point de Iespace de recherche (notion d’ergodicité). C’est donc
un opérateur d’exploration, qui sert aussi & maintenir la diversité dans la population d’individus. Les
régles sont en fait un ensemble relativement important de variables, surtout lorsque l'on traite des images
hyperspectrales. L’opérateur de mutation se déclenche au moins une fois & chaque itération et il est
progressif : il convient d’étudier les modifications du génome étape par étape de fagon a pouvoir éliminer
rapidement une mutation létale. La figure C.2 illustre de maniére graphique cet opérateur.

-

DA, I

Fig. C.2 — Exemple de 'application d’un opérateur de mutation.

Dans la littérature, nous pouvons observer que certains perfectionnements ont été apportés a cet
opérateur. Lorsque le pool semble converger vers un optimum local, la probabilité de mutation est pro-
gressivement remontée. Nous pouvons aussi citer le principe de mutation auto-adaptative des stratégies
d’évolution [Back et al., 1991], consistant & optimiser la probabilité de déclenchement en codant directe-
ment cette derniére dans la structure du chromosome, qui sera soumis aux opérateurs génétiques que nous
venons de voir. Au cours du déroulement de I’algorithme, les génes et les individus ayant des probabilités
de mutation élevées auront tendance & disparaitre & mesure que la population converge. De méme, les
génes ayant des probabilités de mutation trop faibles ne peuvent évoluer favorablement et tendent & étre
supprimeés.

C.6 Opérateurs de sélection

Un algorithme évolutionnaire est généralement constitué de cing étapes (sélection des parents, croise-
ment, mutation, évaluation et remplacement) et chacune demande la définition d’un opérateur de sélection
spécifique par l'utilisateur. Plus précisément, chaque couche réalise une opération précise et retransmet
le résultat (le pool génétique obtenu) & la couche suivante qui le traite & son tour. Il est donc possible
de sauvegarder & certaines étapes le contenu actuel du pool, afin de le réutiliser plus tard, comme dans
le cas du remplacement des stratégies d’évolution qui reprend certains individus de la population des
parents et d’autres de la derniére population générée [Beyer et Schwefel, 2002]. Malheureusement, la mise
a jour des individus (calcul de la fitness, paramétres de certains individus complexes comme les arbres
en programmation génétique, comparaisons deux a deux si l’on souhaite éliminer les doublons, ...) doit
étre effectuée a chaque fois pour permettre a I'opérateur génétique suivant d’utiliser ces critéres pour la
sélection, ce qui est trés coliteux en temps.

Chaque couche a besoin de matériel (les individus) qu’elle va piocher dans la couche précédente. Il est
important d’avoir des fonctions de sélection d’individus différentes et adaptées selon le type de la couche
sollicitant ces individus. La sélection est donc vue comme un probléme & part entier, et 'utilisateur peut
en pratique soit choisir les relations couche/fonction-de-sélection qui lui semblent les mieux adaptées a
chacun des cas dans un catalogue de fonctions déja définies, soit définir lui-méme une telle fonction. Les
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travaux de Blickle [Blickle et Thiele, 1995] ont permis d’étudier et de justifier formellement de nombreuses
méthodes de sélection, dont nous nous inspirons ici.

11 faut distinguer trois étapes de I’algorithme, ot il est nécessaire de sélectionner un individu, ce qui
nous donne autant de fonctions de sélection & définir :

— La sélection pour le croisement (avec remise) est utilisée dans le choix des deux parents & croiser.

— La sélection pour la recopie (avec remise) est utilisée dans le choix d’un parent a cloner.

— La sélection pour le remplacement choisit dans la population des parents et des enfants les individus
a conserver pour la génération suivante. La stratégie retenue influence grandement la possibilité
pour la population de converger & long ou a court terme. La stratégie du tournoi est & conseiller
a défaut d’une autre, lorsque ce paysage n’est pas connu.

Certains opérateurs de sélection (pas celui du tournoi, par exemple) prennent en entrée un pool
trié selon 'un des critéres caractéristiques de la structure des régles. Par exemple, pour une structure
arborescente, la population pourra étre triée selon la fitness, la taille des arbres en nombre de nceuds ou la
profondeur maximale des arbres. L’opérateur renvoie en sortie I'individu sélectionné. Pour les opérateurs
génétiques nécessitant le choix de deux individus (croisement), l’opérateur de sélection correspondant est
appelé deux fois. Par sa conception, ce protocole autorise plusieurs individus & étre sélectionnés plusieurs
fois (par exemple, le meilleur individu), ce qui leur permet de pérenniser leurs génes. Les opérateurs sont
représentés graphiquement sur la figure C.3.

r(0,M) B B B f
I rang
Meilleur quantile 2 Y rang

(a) RandomSelection() (b) RandomeElitism() (c) FitnessRoulette() (d) Ranking()

X(0,M)
Y(X,M)
EX(o,M) E Y(X,M) Z(Y,M)
(e) RankSelectionLow() (f) RankSelectionHigh() (9) SUSO)

Fig. C.3 — Représentations graphiques d’opérateurs standards et non standards de sélection. X(a,b)
renvoie un nombre aléatoire X dans l'intervalle [a;b] et M est la taille de la population.

C.6.1 Sélections fondées sur la roulette

La roulette correspond au tirage aléatoire des individus dans une sorte de camembert dont chaque
part a une taille proportionnelle & la fitness de I'individu concerné et donc chaque probabilité de sélection
est directement liée & sa qualité. La figure C.3(c) présente I'explication de cette stratégie.

Cet opérateur est considéré par certains spécialistes comme un opérateur que ’on ne doit pas utiliser
si ’on ne connait pas assez bien le paysage de la fitness [Collet et al., 2000]. En effet, il n’offre pas ou
peu de controle sur la pression de sélection : notamment, un petit sous-ensemble d’individus de force
élevée peut absorber le reste de la population lors des générations suivantes et peut conduire & une
convergence prématurée a cause d’'un manque de diversification (la fitness se stabilisant alors loin du
maximum souhaité).
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C.6.2 Sélections fondées sur le rang

La sélection selon le rang (ang., ranking) est une méthode fondée sur l'ordre des individus dans un
pool ordonné par leurs notes. Les notes proposées par la fonction fitness ne sont qu’une représentation
relative de la qualité d’un individu par rapport & ses congénéres. Ici, la représentation est relative par
rapport a leur rang. Il existe plusieurs méthodes pour définir la probabilité de sélection d’un individu &
partir de son rang. Cette probabilité peut étre définie directement comme illustré sur la figure C.3(d) ou
indirectement en utilisant par exemple des pointeurs intermédiaires (figures C.3(e) et C.3(f)).

Dans le cas direct, chaque part & une taille proportionnelle au rang de 'individu. D’autres stratégies
existent, par exemple les variantes polynomiales utilisant R, avec « > 0 a la place de R (le rang de
lindividu). Un individu trés faible n’est donc pas éliminé. De plus, la fonction de qualité n’a pas pour but
de produire une note absolue (il faudrait qu’un individu réellement deux fois moins performant dans la
premiére génération que dans la derniére obtienne une note deux fois plus faible pour que ses chances de
sélection soient comparables, ce qui est difficile & garantir dans la pratique), mais simplement de trier les
individus entre eux. Ce relativisme permet de ne pas perturber les opérateurs génétiques lorsque les notes
sont extrémes. Seules comptent donc les positions relatives des individus et non la valeur de la fonction
fitness dont ’échelle peut étre arbitraire.

La sélection par le rang présentée sur la figure C.3(e), qui n’est pas une méthode de sélection standard,
applique le principe suivant : disposant d’une liste de M individus triés (le premier étant le meilleur), on
tire un nombre aléatoire X entre 1 et M inclus. Puis on tire un second nombre aléatoire Y entre 1 et X.
L’individu sélectionné est alors Y. Etudions la probabilité de sélection d’un individu donné dans ce cas.

Soit Pyr({X = i}) la probabilité qu’en choisissant X entre 1 et M on obtienne ¢. Puisque ’on dispose
d’un espace de valeurs discrétes, cette probabilité est facile a calculer :

1
M

Soit P, ({Y = i}) la probabilité qu’en choisissant ¥ selon la procédure décrite ci-dessus, on obtienne
i.On a:

Pu({X =i}) = (C2)

M
Py({Y =i}) = Z [Prr({X = 3}).Pi({Y = i})] (C.3)

En effet, il faut que 1 < i < X < M. Pour tous les choix de j possibles pour X, la probabilité que 4
soit tiré entre 1 et j est Pj({Y = i}). Par équivalence, on obtient une équation ne dépendant que de i et
de M :

PM({Y:Z’}):Z[%%} :%Z% (C.4)

Pour I'exemple, le choix du meilleur individu dans une population de 100 individus se calcule ainsi :

1 oo
Plo{Y =1} = - ~0.0519 (C.5)
100°
j= 1

Il y a donc environ 5% de trés bons individus qui passent dans la génération suivante grace a cette
méthode. S’il n’y a que 5 individus, la probabilité qu’a le meilleur de passer est de 45%. Cette méthode
donne de bons résultat pour les populations d’au moins 100 & 200 individus.

Contrairement a la stratégie dite de la roue de la roulette distinguant les individus trés forts des
individus forts et moyens, la sélection selon le rang permet de privilégier les plus forts sans oublier les
faibles ni ceux qui n’ont pas une note suffisante pour s’imposer. Par exemple, si cinq individus ont une
excellente évaluation par rapport aux autres parmi une population d’une centaine d’individus, il y a de
fortes chances que le sixiéme individu puisse étre sélectionné, méme s’il a une fitness faible, ce qui est
important pour éviter le phénomeéne d’absorption élitiste, évoqué dans la section précédente. Les sélections
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par le rang sont en pratique meilleures que les sélections par la roue de la roulette, mais elles nécessitent
un tri préalable de la population. Cette opération, cotiteuse en temps, n’est pas nécessaire dans d’autres
types de sélection, comme celle par tournoi (voir la section C.6.4). De plus, la pression de sélection est
plus facilement controlable que pour la roue de la roulette, mais moins que pour le tournoi.

C.6.3 Sélection par échantillonnage stochastique universel

Cette méthode, aussi connue sous le nom de roue de la roulette généralisée ou Stochastic Universal
Sampling (SUS), a été proposée par Béker [Biker, 1987]. Elle est illustrée sur la figure C.3(g). Comme
dans le cas de la roue de la roulette, les parts ont une taille proportionnelle & la fitness de chaque individu.
Ensuite, un sélecteur comprenant autant de pointeurs que d’individus & choisir, et espacés réguliérement,
est utilisé de maniére aléatoire pour sélectionner en une seule étape les individus & conserver.

Cette méthode permet aux meilleurs individus d’étre sélectionnés plus souvent, avec une pression
de sélection moins forte comparée a celle de la roulette. Les individus qui ont des valeurs de fitness plus
faibles auront donc plus de chance de participer & la génération suivante. De plus, contrairement aux
méthodes par rang, il ne faut pas trier la population au préalable.

C.6.4 Sélection par tournoi

L’utilisateur non expérimenté avec les algorithmes évolutionnaires pourra généralement considérer le
tournoi comme I'une des meilleures stratégies. En effet, on peut controler la pression de sélection finement,
contrairement & la roue de la roulette ou au ranking, grace a la multitude de stratégies ou de paramétres
disponibles. On emploiera un tournoi n-aire pour une pression de sélection forte, dont la force décroit
en fonction du nombre d’individus participant au tournoi (généralement on considére une taille de 2 & 5
individus) ou un tournoi stochastique pour une pression de sélection plus faible. Le tournoi n-aire est une
méthode déterministe qui consiste & choisir directement le meilleur individu parmi ceux participant au
tournoi. Le tournoi stochastique (illustré sur la figure C.3(h)) sélectionne le meilleur individu avec une
probabilité comprise entre 50% (pur hasard) et 100% (équivalent & un tournoi binaire). Un autre avantage
est sa rapidité, comparé & d’autres stratégies comme la roue de la roulette. Puisque seule importe la fitness
pour les individus participant au tournoi, un tri préalable de la population compléte n’est pas nécessaire.
Enfin, elle fait partie des stratégies de sélection, avec les sélections par rang,  ne pas dépendre directement
du paysage de la fitness. Les sélections qui en dépendent trop fortement présentent le probléme que leur
pression de sélection est incontrolable, pouvant mener & une convergence prématurée ou une convergence
trop lente, suivant le paysage de la fitness. Sauf a savoir exactement & quoi ressemble le paysage de la
fitness, et & condition que ce paysage fournisse une pression de sélection adéquate, il vaut mieux utiliser
un algorithme de sélection & pression de sélection controlée par l'utilisateur. La sélection par tournoi
présente donc une bonne efficacité en plus de sa simplicité algorithmique.

C.7 Critéres d’arrét

Les critéres d’arrét permettent de savoir s’il faut arréter algorithme : on s’assure que la population a
convergé selon des critéres statistiques définis de telle sorte qu’il soit probable que le meilleur individu est
proche d’un maximum global ou que la population n’évoluera plus [Schmitt, 2004]. Nous allons détailler
plusieurs critéres utilisés couramment. Ces critéres sont inclusifs, c’est-a-dire qu’il suffit qu’il y en ait un
seul qui s’active pour que ’algorithme soit stoppé.

Nombre de générations. Un contrdle direct sur la durée de I’exécution s’effectue par le choix du
nombre maximum de générations a calculer (Nmax). Cette limite nous donne ’assurance que ’algorithme
se terminera dans tous les cas.

Seuil sur la fitness. La qualité des individus est bornée par 1. Si la fitness d’un individu dépasse
un seuil fixé, par exemple pris dans 'intervalle [0.8; 1[, nous pouvons considérer qu’il y a peu de chance
d’avoir un individu encore plus performant : nous demandons donc a ’algorithme de s’arréter.
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Convergence de la fitness. Cependant, la note se stabilise souvent bien loin du seuil fixé. 11 faut
donc un moyen de détecter le ralentissement de 'apprentissage, afin d’éviter d’attendre indéfiniment la
fin des itérations. On utilise donc comme critére d’arrét I’évolution des notes des meilleurs individus a
chaque génération : si celles-ci se stabilisent et forment des paliers trop longs, on met fin & 'apprentissage.
Plus formellement, soit @ la qualité du meilleur individu du pool génétique obtenu au cours de la k-
iéme derniére génération, avec k > 1, et (Jy la qualité du meilleur individu de la génération courante.
L’algorithme est interrompu si 'inégalité suivante est vérifiée :

ka=1 Qk

=t - Q

<e€ (0-6)

ol P représente la longueur maximale d’un palier et € la variation maximale de ce palier par rapport
a la note courante : si on choisit une petite valeur pour ¢, la variation de la note devra étre quasiment
constante pour que l’algorithme s’arréte.

Convergence de la population. La fitness moyenne @, de la population est comparée a celle
(Qo) du meilleur individu. Lorsque Q, > 7Qo, avec 7 un paramétre défini par I'utilisateur, I’algorithme
est déclaré comme ayant convergé.

L’utilisateur possede le controle de la totalité de cette paramétrisation. Des valeurs par défaut lui
sont proposées, en accord avec nos expérimentations par rapport & la taille des régles, la complexité de
la représentation et la performance de I’apprentissage : le palier P doit varier entre 10 et 20 générations,
selon la fiabilité que I’on désire pour le test de stabilité de la solution. La variation €, quand & elle, peut se
satisfaire d’une valeur trés faible (10~%) voire nulle pour les génomes & valeurs entiéres, car les quantités
discrétes rendent aisément 1’évolution des notes constante au bout d’un certain point. Le nombre de
générations Nmax ne devrait pas excéder 200 a 500, méme dans les problémes les plus complexes. Enfin,
le taux 7 peut étre choisi dans I'intervalle [0.6;0.9].



Annexe D

Le projet TIDE

Le projet TIDE (Tidal Inlets Dynamics and Environment) [TIDE, 2005] est un projet de recherche
européen d’une durée de quatre ans (2002-2005), dirigé par le professeur Marco Marani de 'université de
Padova (UNPADU). Les zones & marées, telles que les lagunes et les estuaires, sont des environnements
complexes et sensibles & des changements morphologiques et écologiques rapides, souvent en réponse a
la forte présence humaine [Marani et al., 2004]. Les problémes liés & ces zones ont été identifiés par
la convention internationale de Ramsar sur les zones humides : 445 des 844 zones humides protégées
d’importance internationale énumeérées par la convention sont situées en Europe. Le projet TIDE vise a
développer des modeéles complets concernant les zones & marées incorporant des descriptions des processus
physiques et écologiques [Marani et al., 2003]. Les modéles en question ne peuvent pas décrire séparément
les phénoménes biologiques et physiques sans prévoir leurs conséquences dans le systéme global. Pour
progresser, la recherche dans ce domaine nécessite une nouvelle génération de modeéles économiques,
adaptés aux environnements de grande envergure. Les conséquences socio-économiques de l’altération
de ces systémes font partie intégrante du programme du projet TIDE [Marani et al., 2005; Silvestri et
Marani, 2004; Silvestri et al., 2005].

Ce projet implique plusieurs laboratoires, en Italie, l'université de Padoue (UNPADU), 'université de
Trente (UNITN), l'université de Venise (UNIVE) et I'Institut Vénitien des Arts et des Lettres (IVSLA),
le groupe industriel allemand Toposys, au Royaume-Uni, le Centre Scientifique sur les Systémes Envi-
ronnementaux (ESSC) et 'université St. Andrews (USTAN) et en France, 'université Louis Pasteur de
Strasbourg.

La figure D.1 présente les relations entre les groupes de travaux du projet TIDE. Nos recherches se
situent dans le groupe de travail numéro 6, dirigé par Massimo Menenti, de 'université Louis Pasteur de
Strasbourg.

L’objectif de ce groupe de travail, nommé classification de végétations microphytobenthiques a partir
de données de télédétection, est de développer une recherche scientifique visant & connaitre I'utilisation
optimale des données radiométriques hyperspectrales pour la classification de végétations halophytiques
et comprendre les relations microbiennes benthiques dans les zones & marées [Silvestri et al., 2002; Silvestri
et al., 2003]. Quatre objectifs interdépendants ont été identifiés :

1. Traiter les données de télédétection pour en assurer l’assemblage géométrique optimal et rassem-
bler les données de terrain nécessaires pour ’extraction d’informations quantitatives sur les classes
d’intérét.

2. Développer des méthodes génériques pour sélectionner les données radiométriques les plus utiles et
les plus précises sur la réflectance spectrale des objets du sol.

3. Développer des classifications efficaces, précises et robustes, ainsi que des algorithmes de démixtion
(ang., unmizing) pour gérer la complexité des données produites par les instruments hyperspectraux.

4. Superposer les classifications de végétations benthiques dans les zones & marées pour comprendre
leurs relations et leurs propriétés géomorphiques.
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FiG. D.1 — Les groupes de travail du projet TIDE.

Cette thése a été financée par le projet TIDE et les recherches scientifiques développées durant

nos travaux ont permis d’atteindre certains des objectifs définis par le groupe de travail numéro 6.
Cela concerne notamment le développement d’algorithmes efficaces et robustes pour traiter les jeux
d’apprentissage hard, soft et flous, et la découverte et 'extraction de connaissances structurées sous la
forme de régles de classification, stockées dans des bases de régles réutilisables, visant & permettre une
compréhension plus aisée de la complexité des données.
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Le projet FoDoMust

Le projet FoDoMust, dont nos travaux font partie, est inscrit dans ’ACI Masse de Données. L’amé-
lioration des dispositifs expérimentaux et la part grandissante de l'informatique et de la simulation dans
la plupart des champs disciplinaires conduit & la production de données en quantité de plus en plus
importante. I’objectif de cette ACI est de fortement dynamiser la recherche sur 'ensemble des aspects
relatifs & ces grandes masses de données : acquisition, stockage, transmission, traitement, modélisation,
représentation, structuration, indexation, interrogation, comparaison, manipulation, classification, fusion,
extraction de sens, apprentissage, visualisation [MDD, 2005].

Le but du projet FoDoMust (Fouille de Données Multi-Stratégies), coordonné par Pierre Gangarski
de 'université Louis Pasteur de Strasbourg, est d’extraire et qualifier la végétation urbaine & partir de
bases de données images [FoDoMuST, 2005]. La profusion des informations géographiques (photogra-
phies aériennes, images satellites, etc) permet un suivi et une gestion durable des territoires (végétation
urbaine). L’augmentation des sources de données, leur hétérogénéité et leur complexité rendent leur uti-
lisation difficile par des utilisateurs non-spécialistes de l'interprétation et du traitement d’image. Les
objectifs du projet, associés & l'imagerie spatiale, sont d’une part, de proposer une méthode d’aide a
Iinterprétation & partir d’'une masse de données images et d’autre part, de définir un processus com-
plet de fouilles de données (structuration, construction des « objets », classification et interprétation de
linformation) permettant une utilisation conjointe et complémentaire des différentes sources. Ce dernier
aspect est rarement pris en compte dans les méthodes actuelles d’extraction. Le verrou principal réside
dans la nécessité d’utiliser une multi-formalisation & plusieurs niveaux d’abstraction.

La solution envisagée par le projet consiste en une approche multi-stratégie dans le processus de fouille
de données. L’objectif premier de ces travaux est d’étudier et de définir des méthodes et outils permettant
une utilisation conjointe de plusieurs sources de connaissances et d’images lors de I’identification, la
localisation et la formalisation des éléments du tissu urbain (surfaces minéralisées, végétation, eau). De
fait, les données manipulées ne sont plus sous la forme classique attributs-valeurs simple et immédiate car
elles peuvent étre issues de sources diverses comme des capteurs ou sources physiques différentes (capteurs
radiométriques, etc), représenter la scéne & des dates différentes (différents passages d’un satellite) ou
enfin, regrouper des informations de natures totalement différentes (texte, taxonomie, référentiel, etc).
Dans le cadre de cette ACI, 'objectif global est de proposer un processus complet de sélection, d’extraction
et d’interprétation de connaissances & partir de bases de données d’images et de connaissances du domaine
considéré en quatre phases :

1. Structuration et organisation des données.
2. Construction des « objets ».

3. Classification multi-stratégie.

4. Aide a l'interprétation.

Ce projet, d’'une durée de trois ans (2004-2006), implique plusieurs laboratoires francais : & Stras-
bourg, le laboratoire des Sciences de 'Image, de I'Informatique et de la Télédétection (LSIIT) et le labo-
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ratoire Image et Ville (LIV), et a Lyon, I’équipe de Recherche en Ingénierie des Connaissances (ERIC).

Les travaux publiés dans ce mémoire s’inscrivent dans certains objectifs du projet FoDoMust. A tra-
vers la découverte et 'extraction de régles de classification, ils proposent une explication compréhensible
des données et constituent dés lors 'une des stratégies d’extraction et d’interprétation des connaissances
envisagées par le projet. La collaboration initiée par le projet FoDoMust avec ces laboratoires vise aussi
a expérimenter et a valider les différents prototypes que nous avons développés. De nombreuses perspec-
tives offertes par cette thése seront étudiées durant la suite du projet, par exemple la fouille de données
multi-sources ainsi que la construction de régles & représentation contextuelle.



Annexe F

La plate-forme VPlat

Nous avons congu une plate-forme, nommée VPlat, qui rassemble la totalité des algorithmes, étudiés
dans le cadre de cette thése, sous la forme d’un ensemble de librairies. Ces librairies, utilisées pour réaliser
les différentes expérimentations, ont été implantées en partie dans un logiciel possédant une interface
utilisateur conviviale, le logiciel ICU [ICU, 2005]. Les trois objectifs principaux de la plate-forme sont les
suivants :

1. Abstraire le format des données d’entrée (images, textes, bases de données, ...) et de sortie (régles,
classifications). Cette abstraction facilite 'importation, l’exportation et la gestion de nouveaux
formats de données.

2. Abstraire le paramétrage et le lancement des différentes méthodes d’apprentissage. Le paramétrage
peut étre ainsi lu et écrit dans divers fichiers de configuration ce qui est utile pour exécuter les
algorithmes plusieurs fois de la méme facon ou pour proposer & l'utilisateur plusieurs fichiers de
configuration automatique par défaut (apprentissage rapide, apprentissage haute qualité, ...).

3. Proposer des modéles de validation génériques manipulant des données et des méthodes d’appren-
tissage abstraites. L’abstraction des données et des modéles permet la mise en place de procédures
de validation automatiques (validation croisée, ...) ou des apprentissages batchs (extraction de sta-
tistiques d’apprentissage) qui seront indépendants des algorithmes étudiés.

La figure F.1 détaille I'architecture de la plate-forme et montre les relations entre les différentes
classes. Le bloc « MODEL » [B1] contient toutes les fonctions d’apprentissage ainsi que les fonctions qui
permettent d’évaluer les régles sur les échantillons (classifications hard, soft, floue ou par intervalles flous).
Il renferme aussi les fonctions qui gérent les bases de régles (lecture, écriture, affichage, statistiques). Le
bloc « DATA » [B2] rassemble les filtres pour les divers formats de fichier et comprend la gestion de
la lecture et de ’écriture pour ces formats. Les données en question doivent obligatoirement étre sous
la forme d’un ensemble d’échantillons, ot chaque échantillon est une séquence de valeurs, chacune étant
associée & un attribut particulier.

Cette plate-forme est capable de lire ou écrire les données dans les formats suivants : les données
tabulaires (& séparateurs divers) TXT et SEQ, le format ARFF, les descriptions des régions d’intérét
en ASCII (Region of Interest), les formats d’image classiques BMP, PGM, PPM et TIFF, les formats
d’image spectrale BIL, BIP, BSQ et TOR, ainsi que les descriptions de légendes de classes LEG. Selon
leurs représentations, les bases de régles peuvent étre exportées dans les formats TXT et HTML (repré-
sentations plates) ou dans les formats DOT et PNG (représentations arborescentes). Les formats HTML
et PNG permettent une visualisation aisée des régles par 'utilisateur.

Les méthodes d’apprentissage incluses dans VPlat sont ICU, XCS-R, ICUX, ProgGen, Gram-
Gen, XCS5 et FANN (Fast Artificial Neural Network Library, [FANN, 2005]). Un module est aussi
dédié a l'interprétation et a la traduction en C des arbres de décision sous format texte produits par le
logiciel Weka (notamment pour l’algorithme J48, c’est-a-dire C4.5), ce qui permet de les tester et les
valider sur des échantillons spécifiques de données de télédétection. La plate-forme comprend aussi la
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FiG. F.1 — Diagramme de classes pour la plate-forme VPlat.

librairie GALib [Corcoran, 1993] ainsi que des corps de fonctions personnalisés qui ont permis de réaliser
les expérimentations liées & 1'utilisation de génomes dans des algorithmes génétiques simples.



177

Les stratégies de validation qui sont implémentées dans VPlat sont les suivantes : le holding-out, la
validation croisée & k partitions, le bootstrapping, le jackknifing et la génération de courbes ROC. D’autres
fonctions diverses sont présentes pour le calcul des mesures de qualité, la génération des visualisations
(spectrogrammes, ...), ’échantillonnage des exemples ou le calcul de certains pré-traitements, comme les
enveloppes convexes (voir la section 3.4.2).

Cette plate-forme a été programmeée en C++, pour des raisons de rapidité et de portabilité (nous
avons réalisé nos expérimentations sur GNU/Linux et sur Windows). De plus amples informations sont
disponible sur le site suivant : http://Isiit.u-strasbg.fr/afd.
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Résumé

En classification supervisée d’images de télédétection, la découverte de classes précises et exactes
et leur explication, comptent parmi les objectifs essentiels que se fixent les thématiciens. Les images de
télédétection haute résolution et hyperspectrales contiennent des données volumineuses et complexes. De
la part d’un algorithme de classification, répondre & cette requéte est une mission relativement ardue.
En effet, de nombreuses sources d’informations de différentes natures et souvent trés complexes sont
disponibles, a partir desquelles les concepts thématiques étudiés par I'expert doivent étre extraits et
surtout expliqués. Dans de nombreux cas, il peut s’avérer nécessaire de considérer — en plus du probléme
habituel de classification — 'idée qu’un méme pixel peut appartenir a plusieurs classes. La technologie
Pautorisant de plus en plus, seules des images de trés haute résolution (< 60 cm) peuvent étre exploitées
pour obtenir une précision acceptable.

Les travaux de cette thése, consacrés a la découverte de régles de classification, se découpent en trois
parties : (1) explorer 'influence de la représentation des classifieurs sur la qualité de reconnaissance des
différentes classes de terrain en classification hard ou soft, (2) étudier plusieurs post-traitements des bases
de régles produites par les algorithmes afin d’en améliorer ou d’en simplifier le contenu et (3) modifier
des représentations existantes ou utiliser de nouveaux paradigmes pour traiter les classifications floues.

Pour faire face a la complexité et la taille des données, il est connu dans la littérature que les
algorithmes évolutifs présentent une approche idéale pour ce genre de probléme. Nous avons notamment
retenu une approche basée sur un systéme de classifieurs couplé & un algorithme génétique. Ces systémes
permettent de développer des populations de régles de classification simples, lisibles et génériques. Ces
bases de régles favorisent I’application de la connaissance apprise sur une autre partie de I’image voire une
nouvelle image tout en garantissant un taux correct de vrais positifs et vrais négatifs pour la classification
de nouveaux exemples. Le couplage avec un algorithme génétique permet une découverte de solutions de
maniére évolutive, ce qui ce qui facilite I’absorption d’une grande partie de la complexité de traitement
d’une telle masse de données et surtout d’étre tolérant au bruit (robustesse).

Enfin, un certain nombre de mesures de qualité ont été développées pour juger de lefficacité de ces
algorithmes et des protocoles de validation ont été proposés pour comparer les différents résultats entre
eux. Ces algorithmes ont tous été validés sur des données réelles de télédétection, dans le cadre du projet
européen TIDE et du projet d’ACI FoDoMust. Nous pensons que les résultats obtenus par les différentes
expérimentations et par les validations, présentés dans la thése, sont encourageants. Ces recherches ont
abouti & la conception et au développement de plusieurs logiciels fonctionnels disponibles sur le site web :
http://Isiit.u-strasbg.fr/afd.

Mots clés : intelligence artificielle, apprentissage supervisé, découverte de connaissances, découverte
de régles de classification, évolution artificielle, systémes de classifieurs, images de télédétection, images
hyperspectrales.



