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Abstract

The creation of some kind of representations depicting the current state of
Science (or scientograms) is an established and beaten track for many years
now. However, if we are concerned with the automatic comparison, analysis
and understanding of a set of scientograms, showing for instance the evolu-
tion of a scientific domain or a face-to-face comparison of several countries,
the task is titanically complex as the amount of data to analyze becomes huge
and complex. In this paper, we aim to show that graph-based data mining
tools are useful to deal with scientogram analysis. Subdue, the first algo-
rithm proposed in the graph mining area, has been chosen for this purpose.
This algorithm has been customized to deal with three different scientogram
analysis tasks regarding the evolution of a scientific domain over time, the
extraction of the common research categories substructures in the world, and
the comparison of scientific domains between different countries. The out-
comes obtained in the developed experiments have clearly demonstrated the
potential of graph mining tools in scientogram analysis.
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1. Introduction

The construction of a great map of sciences! has been a persistent idea in
the modern ages. This need arises from the general conviction that an image
or graphic representation of a domain favors and facilitates its comprehension
and analysis. The visualization of scientific information has long been used to
uncover and divulge the essence and structure of science [2, 7, 9]. Yet despite
its ripe age, information display is still in an adolescent stage of evolution
in the context of its application to scientific domain analysis. Never before
data have been generated at such high volumes as it is today. Exploring
and analyzing the vast volumes of scientific data is becoming increasingly
difficult. There is a large number of information visualization techniques
which have been developed over the last decade within this area [8, 44, 45,
46, 60|, but none of them has been designed to support the exploration of
large datasets. Besides, all the latter approaches require a large amount of
expertise from the user, which reduces the chances to automate the analysis
procedure. Nevertheless, it is clear that information visualization and visual
data mining [33] can provide the theoretical and practical backgrounds to
deal with scientific information analysis.

The generation of a big picture is something implicit in the process of
visualizing scientific information. In an attempt to sum what has taken place
to date up, we can say that nowadays there are two proposals for tracking
down the big picture. On the one hand, one can adopt the traditional units
of analysis (authors, documents, and journals) and, through their grouping,
identify scientific disciplines following a bottom-up process [4, 34, 62, 63].
On the other hand, the alternative uses the categories of the documents
to the same end, and shows the scientific structure from them in a top-
down manner [47|. The former proposal presents all the pros of its fine-
grained character, but it runs into difficulties in representing the totality of
the panorama on a single plane and in tagging the disciplines. The latter
option has its strong points where the former shows weaknesses, and vice
versa. That is, it is relatively simple to represent the scientific structure

'In the following we will consider (visual) science maps, scientograms, graphs, or simply
maps as synonyms within our domain.



of a domain on a single plane by means of a maximum of 300 categories
and their interrelation, avoiding tagging problems. However, this implies
the acceptance of a classification of science in predefined categories, never
transparent and always subjective, as well as the fact that documents are
classified by the journals in which they are published and not by their content
(coarse-grained character). To our mind, both the former and the latter are
valid alternatives for the achievement of the big picture. In this contribution,
we will consider the use of the latter one to design scientograms in order to
delimit and discover scientific disciplines.

Current scientogram analysis techniques [3, 10, 34, 41, 45| aim to pro-
vide a fine, detailed, tight view of a scientogram. To do so, they are based on
performing a low-level analysis and comparison of the maps. Statistical tech-
niques, computer algorithms, and macrostructure and microstructure tech-
niques for the identification of thematic areas and scientific disciplines have
already been used to analyze and compare scientograms [5, 8, 44, 45, 66].
However, this approach shows a main limitation: only a single or a very
reduced set of maps can be analyzed or compared together. In fact, the
field lacks an easy-to-use approach allowing the identification and the com-
parison of scientific structures within scientograms with a higher degree of
automation. In our study, graph mining tools are considered to perform a
higher level analysis, allowing the joint comparison of a larger number of
maps (i.e., performing scientogram mining). Thanks to that, the novel high-
level analysis methodology introduced in the current contribution and the
existing low-level approaches can be used as complementary frameworks for
the analysis and comparison of scientograms.

Graph-based data mining (GBDM) [14, 23, 67| involves the automatic ex-
traction of novel and useful knowledge from a graph representation of data.
By "novel” we mean that the knowledge retrieved is not directly encoded in
the data but deeply masked in it (hence, it requires to be uncovered), and
by “useful ” we mean that the discovered patterns have in general an interest
for the domain expert: active principles of molecules, common backbones in
a communication network, common portions of an electronic circuit, etc. In
fact, GBDM techniques have been applied for frequent substructure discov-
ery and graph matching in a large number of domains including chemistry
and applied biology [1, 26|, classification of chemical compounds [17], and
unsupervised and supervised pattern learning [14|, among many others. In
particular, the first proposal in the topic, Subdue, has proved to be successful
in many different real-world applications [11, 19, 24, 37, 54].
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Subdue [12, 13] is a graph-based knowledge discovery system that finds
structural, relational patterns in data representing entities and relationships.
It aims to discover interesting and repetitive substructures in a structural
database (DB). For this purpose, the minimum description length (MDL)
principle [56] is used in order to compress the original DB into a hierarchical
and shorter version. Since the MDL principle allows the discovery of both
large and frequent substructures we think that Subdue, as well as any other
GBDM technique based on the same idea (i.e., frequent subgraph mining), is
well recommended for scientogram analysis. This paper is actually the first
proposal on the use of Subdue in this application domain. In particular, we
will describe how this algorithm can be customized to deal with three differ-
ent scientogram analysis and comparison tasks regarding the evolution of a
scientific domain over time, the extraction of the common research categories
substructures in the world, and the comparison of scientific domains between
different countries.

The structure of the current contribution is as follows. In the second
section, we review the current techniques to design and analyze scientograms
as well as the current state of the art of GBDM, detailing the particular
case of the Subdue algorithm. In the third section we detail the main com-
ponents of Subdue and we show how several scientogram analysis tasks can
be performed by means of this algorithm. The three next sections present
experiments related to three different case studies considered. Finally, some
concluding remarks are pointed out in the last section.

2. Preliminaries

In this section we will present a state of the art of the current techniques
used to design and analyze scientograms. Besides, we will review the GBDM
field, describing its scope, the most known techniques (in particular, Subdue),
and the application domains.

2.1. Scientogram design

The generation of a scientogram following the top-down approach [47]
requires the sequential application of several techniques. They are reviewed
in the next subsections.

2.1.1. Units of analysis
The categories are the units of analysis and representation [47, 65]. Each
category agglutinates the journals that were categorized under that name,
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and likewise the documents that were published in those journals. Because
we strive to represent and analyze the structure of vast domains, whether
they be thematic, geographic or institutional, we fall back on to SCOPUS-
SJR co-citation categories as a tool for this purpose.

2.1.2. Unit of measure

Co-citation is a widely used and generally accepted unit of measure for
obtaining relational information about documents belonging to a domain.
Once the rough information of the SCOPUS-SJR co-citation for the cate-
gories present in the domain to be analyzed is obtained, a co-citation measure
CM 1is computed for each pair of categories ¢ and j as follows:

Celiy)

c(i) - ¢(j)

where C'c is the co-citation frequency and c is the citation frequency.

Notice that, the aim of this scientogram generation method is that the
final scientogram obtained is a tree. Hence, in order to avoid the existence of
cycles in the pruned network (see the next subsection), the considered mea-
sure of association adds the normalized co-citation (divided by the square
root of the product of the frequencies of the co-cited documents’ citations
[58]) to the rough category co-citation frequency. In this way, the network
weights become real numbers, allowing us to create small differences between
similar values for the co-citation frequency. The latter fact allows the prun-
ing algorithm to select between two edges which would have otherwise the
same weight (in view of the Cc(ij) value), as in general using the modified
formula the weights of the two edges will become different. This allows us
to avoid the occurrence of cycles and to achieve the optimal pruning of each
link considering the citing conditions of each category. Of course, this tech-
nique is not perfect: some edges will keep on having the same weight even
if the latter formula is considered. For instance, in the non-pruned version
of the European map, on 34484 weights, around a 50% have the same value.
Nevertheless, the new formula actually helps: without the additional factor,
less than a 4% of links would be distinct.

CM(ij) = Celig) + (1)

2.1.3. Dimensionality reduction

We should take into account the fact that the networks resulting from
citation, co-citation, or term co-occurrence analysis are usually dense, when
the categories are used as the unit for each node. Hence, the Pathfinder



algorithm [6, 15] is applied to the co-citation matrix to prune the network.
Due to the density of the data, and especially in the case of vast scientific
domains with a high number of entities (categories in our case) in the network,
Pathfinder is usually parameterized to » = oo and ¢ = n — 1. This is done in
order to preserve and highlight the salient relationships between categories,
and for capturing the essential underlying intellectual structure of a scientific
domain. These parameters also allow us to work with quick variants of the
original Pathfinder algorithm [52, 53].

2.1.4. Layout

There are many different methods for the automatic visualization of the
Pathfinder networks (PFNETs). The spring embedder family of methods is
the most widely used in the area of Information Science. Spring embedders
assign coordinates to the nodes in such a way that the final graph will be
pleasing to the eye, and that the most important elements are located in
the center of the representation (also called its backbone). Kamada-Kawai’s
algorithm [32] is one of the most extended methods to perform this task.
Starting from a circular position of the nodes, it generates networks with
aesthetic criteria such as the maximum use of available space, the minimum
number of crossed links, the forced separation of nodes, the build of balanced
maps, etc.

The combination of categories co-citation, PFNETs, and Kamada-Kawai
makes the categories that most sources share with the rest, tend to situate
themselves toward the center.

2.1.5. Considered scientific data

For strictly research purposes we are using SCOPUS-SJR Data, obtained
from the Scimago Journal & Country Rank portal?. This gave us a total of 36
millions of documents (comprising articles, biographical items, book reviews,
corrections, editorial materials, letters, meeting abstracts, and reviews) since
1996 to 2008 [65]. As an example, a scientogram resulting from the execution
of the different steps mentioned in the previous sections is shown in Fig. 1.

The graph DB considered in the current contribution comprises scien-
tograms of 73 countries (see Table 1). For 60 of them, the data corresponding
to their scientific production for each year between 1996 and 2005 is available,

Zhttp://www.scimagojr.com/
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Figure 1: An example of a scientogram corresponding to the Europe scientific domain in
2002 (category names are not printed to improve the readability).

thus representing a study period of ten years with one scientogram for each
year. Overall, the scientograms in the DB have 159 135 nodes and 172 081
edges.

2.2. State of the Art on Scientogram Analysis

Since their origins |20, 61|, scientograms have been only analyzed super-
ficially. This means that from a specific starting point, usually the center,
the analysis began taking an excursion [60] to illustrate the rendered struc-
ture of science. This kind of analysis has been performed in this way until
today [3, 5, 46, 59|. However, some authors have proposed different methods
based on the combination of algorithms, statistics, and/or network indica-
tors for the analysis and identification of cognitive structures. For instance,
Chen [8] and Moya-Anegon et al. [45] combined PFNETs and factor analysis
for the identification and extraction of scientific structures. Leydesdorff et
al. [40, 42, 44] proposed the use of network measures as structural changes
indicators within the scientific disciplines.



Table 1: List of the 73 countries contained in the DB. For 60 of them, the data for the
ten years period between 1996 and 2005 is available. If that is not the case, the number
of available years are indicated in parenthesis

Countries
Algeria (4) Hungary Puerto Rico (2)
Argentina Iceland (1) Republic Of Korea
Armenia (1) India Romania
Australia Indonesia (6) Russian Federation
Austria Ireland Saudi Arabia
Bangladesh (7) Islamic Republic Of Iran Singapore
Belarus Israel Slovakia
Belgium Italy Slovenia
Brazil Japan South Africa
Bulgaria Jordan (8) Spain
Canada Kenya Sweden
Chile Kuwait Switzerland
China Lebanon (3) Taiwan
Colombia Lithuania (8) Thailand
Croatia Malaysia Tunisia
Cuba Mexico Turkey
Czech Republic Morocco Ukraine
Denmark Netherlands United Arab Emirates (4)
Egypt New Zealand United Kingdom
Estonia Nigeria United States
Finland Norway Uruguay (1)
France Pakistan Venezuela
Germany Philippines (4) Viet Nam (3)
Greece Poland
Hong Kong Portugal

More recently, Leydesdorff and Rafols [41], and Wallace et al. [66] pro-

posed some statistical and algorithmic techniques for the identification of the-
matic areas and scientific disciplines in scientograms. Concurrently, Guerrero-
Bote et al. [22| analyzed and compared, thanks to the information provided
by the links, the scientograms of six Spanish scientific domains based on
Materials Science. Finally, Klavans and Boyack [35] generated a consensual
scientogram from a subjective analysis of twenty existing scientograms.

Hitherto, all the analysis tools put in place are mainly devoted to analyze
a single or a couple of scientograms. Hence, they can only analyze a single
domain or compare domains with backbones. Therefore, the obtaining of
automatic tools allowing us to analyze and compare many domains together
is strongly encouraged in this field. The main aim of the current contribution
is to bridge this gap by means of the use of GBDM techniques.

2.3. Graph-based data mining

In this section, we will review several graph mining techniques with some
of their typical applications. We will also detail the particular algorithm used
in this study, Subdue.



2.53.1. Introduction

The need of mining structural data to uncover objects or concepts that
relates objects (i.e., subgraphs that represent associations of features) has
increased in the past ten years, thus creating the area of GBDM [23, 67|.
Nowadays, GBDM has become a very active area and several techniques
such as Subdue, the Apriori family of methods (Apriori-based GM [29],
Frequent Subgraph Discovery [38|, JoinPath [64], etc.), and the Frequent
Pattern-growth family of methods (CloseGraph [69], FFSM [27], Gaston [48],
gSpan [68], MoFa/MoSS [1], Spin [28], etc.) have been proposed to deal with
problems such as graph matching, graph visualization, frequent substructure
discovery, conceptual clustering, and unsupervised and supervised pattern
learning [14]. Among them, we can highlight Subdue [12, 13|, a graph-based
knowledge discovery system that finds structural, relational patterns in data
representing entities and relationships. This algorithm was the first proposal
in the topic and has been largely extended through the years. It is able
to develop graph shrinking as well as frequent substructure extraction and
hierarchical conceptual clustering.

Among the many different GBDM application domains, frequent sub-
graph discovery, the approach considered in this paper, is in general used in
chemistry and applied biology. Huan et al. [26] applied it to study protein
structural families; Borgelt and Berthold [1] considered it to discover active
chemical substructures concerning the human immunodeficiency virus (HIV);
Koyutiirk et al. [36] applied it to biological networks in order to find which
ones present the larger frequent subpathways; Deshpande et al. [17] dealt
with the classification of chemical compounds using frequent substructures
as features; and Yan et al. [70] improved the time of graph searching using
frequent patterns as indexing features. Nevertheless, up to our knowledge,
the current contribution constitutes the first application of frequent subgraph
mining to the analysis of scientific domains.

2.3.2. The Subdue algorithm

Subdue [12, 13| is a method for discovering interesting and repetitive
substructures in a structural DB. The algorithm uses the MDL principle [56]
to discover frequent substructures in a DB, extract them and replace them
by a single node in order to compress the DB. These extracted substructures
represent structural concepts in the data. The Subdue algorithm can be
run several times in a sequence in order to extract meta-concepts from the
previously simplified DB. After multiple Subdue runs on the DB, we can



discover a hierarchical description of the structural regularities in the data
[31]. Subdue can also use background knowledge, such as domain-oriented
expert knowledge, to be guided and to discover substructures for a particular
domain goal. Through the years, it has been successfully applied to a large
range of real-world problems such as aviation [11]|, chemistry [11], geology
[19], counter-terrorism [24], bioinformatics [37], and web structure mining
[54].

1. Subdue(Graph, BeamWidth, MaxBest, MaxSubSize, Limit)
2 ParentList = {Vertex v | v has a unique label in Graph}
3 Evaluate each vertex in ParentList

4. ChildList = {}

5. BestList = {}

6 ProcessedSubs = 0

7 WHILE ProcessedSubs < Limit and ParentList # () DO
8 WHILE ParentList # () DO

9. Parent = RemoveHead(ParentList)

10. CandidateList = ExtendSubstructure(Parent)

11. FOR EACH Child € CandidateList DO

12. IF SizeOf(Child) < MaxSubSize THEN

13. Evaluate the Child

14. Insert Child in ChildList in order by value
15. ChildList = ChildList mod BeamWidth
16. ProcessedSubs = ProcessedSubs+1

17. Insert Parent in BestList in order by value

18. BestList = BestList mod MaxBest

19. Switch ParentList and ChildList

20. Return BestList

Figure 2: The Subdue GBDM algorithm (reprinted from [13])

Fig. 2 shows the outline of the Subdue GBDM algorithm. The algorithm
takes as input the original graph from which the substructures (i.e. sub-
graphs) have to be extracted and four parameters used to limit the search
while reducing the runtime. Subdue uses a variant of beam search [43] in
order to avoid exponential-sized queue: at each step, only Beam Width new
children from a given parent are explored (see line 14). Furthermore, only
a maximum of MaxzBest substructures having a maximal size of MazSub-
Size are returned to the user, and the algorithm does not develop more than
Limit iterations (see line 6). These parameters ensure that the running time
of Subdue is polynomial and is actually constrained by the BeamWidth and
the Limit parameters [31]. Extending subgraphs edge by edge is the way
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Subdue is using to create new subgraphs. This is performed by the func-
tion ExtendSubstructure(S) which extends the substructure S in all possible
ways, i.e. by adding to S a new edge and a vertex from the input graph,
or by adding a new edge between two vertices that are already a part of S.
ChildList and BestList are two ordered lists in which the substructures hav-
ing the best evaluation values appear first. The evaluation of a substructure
(see line 13) can be computed by the MDL-measure (see section 3.1.1), the
Size-measure (see section 3.1.2), or the Support-measure (see section 3.1.3).
The function L mod N (see lines 15 and 18), in which L is a list and N
an integer, returns the list L if its size is inferior or equal to N, and the
first N elements of L otherwise. The algorithm ends up by returning the
best substructures found considering the chosen evaluation measure and the
constraint parameters.

Other variants of the original Subdue algorithm, including inexact graph
matching, positive and negative graph considerations, and an improved search
algorithm were proposed later by the same authors [31]|. In our contribution,
only the use of positive/negative graphs is an important feature as it is de-
scribed in the next section.

3. Subdue for scientogram analysis

This section is devoted to describe the use of Subdue as a powerful sci-
entogram analysis tool. As said, the application of Subdue for this domain
will rely on its frequent subgraph mining activity (i.e., we will perform scien-
togram mining). In order to properly understand the customization of this
algorithm we needed to develop, some general aspects must be known. In ev-
ery case, the considered Subdue implementation is that made by the original
authors, available at http://ailab.wsu.edu/subdue/. It considers the use
of the three existing measures to extract substructures of interest from the
graph DB. Besides, it takes the concept of positive/negative graphs into ac-
count, thus resulting in two different operation modes, depending on whether
there are negative instances in the DB or not. Different combinations of the
latter two aspects, substructure evaluation measure and positive/negative
substructure operation mode, will be considered to tackle three scientogram
analysis tasks. Section 3.1 will introduce the basics of the three Subdue
evaluation measures and their interaction with the selected operation mode.

Since the underlying scientogram structure is a social network (i.e., a
graph), the uncovering of common subgraphs to different scientograms in an
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automatic fashion can provide the information analyst with very useful in-
formation to explore the characteristics of the scientific domains represented.
The latter capability can be applied to many different scientogram analysis
and comparison tasks. Notice that, thanks to the structure of the considered
scientograms, these common subgraphs will be common research categories
substructures (CRCSs). In the current contribution we have considered three
possible functions for our novel GBDM-based scientogram analysis tool, al-
though we trust it will give rise to many others in the near future. In par-
ticular, we will consider the use of Subdue to: i) study the evolution of the
scientific domain of a single country over time, ii) extract the world CRCSs
in several countries at a given time, and iii) compare the scientific domains
of some countries, in terms of similarities and dissimilarities, at a given time.
These three functionalities will be described in Section 3.2. Nevertheless, the
diversity of the latter tasks prevent us from defining a common framework
for the use of Subdue for scientogram mining. Instead, the particularities of
the application of Subdue for each functionality will be discussed in the next
section, describing the respective case study.

3.1. Subdue’s evaluation measures and operation modes

The three substructure evaluation measures considered by Subdue are
described in the following subsections, together with their interaction with
the positive/negative substructure operation mode.

3.1.1. FEvaluation criterion based on the minimum description length

Rissanen introduced the MDL principle [56], which suggests that the best
theory to describe a dataset is that which minimizes the description length
of the entire dataset. The MDL measure has been used in a rather large
number of applications, ranging from decision tree induction [51| and image
processing [39, 49, 50|, to concept learning from relational data [16] and
learning models of non-homogeneous engineering domains [55].

In Subdue, when the MDL measure is used, a substructure is evaluated
based on how well it can compress the entire dataset. The MDL of a graph
is the necessary number of bits for describing completely the graph. This
number of bits is usually given by the value /(5), the number of bits required
to encode the substructure S. I(S) is computed as the sum of the number of
bits to encode the vertices of S, the number of bits to encode the edges of S,
and the number of bits to encode the adjacency matrix describing the graph
connectivity of S. Subdue looks for the substructure S minimizing 1(S) +
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I(G|S), where G is the input graph, I(S) is the number of bits required to
encode the uncovered substructure, and /(G|S) is the number of bits required
to encode the graph obtained by compressing G with S, i.e. substituting each
occurrence of S in G by a single node [25]. In the following, we renamed
the MDLi measure (i’ stands for inverse) as we are maximizing its value:
Subdue considers a given substructure S is better than another one S’ if
the MDLi measure valueypri(S, G) is higher than valueypr;(S’, G), where
valuey pri(S, G) is computed as follows:

1(G)
1(S) + 1(C]9) 2)

Note that by maximizing the MDLi measure, the optimization of two
criteria is jointly considered:

valuey pri(S, G) =

e on the one hand, the measure highlights large substructures as a better
compression rate (or better MDLi value) is obtained when a bigger
substructure can be extracted and replaced (compressed) by a single
node;

e on the other hand, the measure highlights substructures having a large
support (the support of a substructure is the number of occurrences of
this substructure in the DB) as a better compression rate is obtained
when many substructures are replaced (compressed) by a single node.

In our case, the graph GG on which Subdue is applied is generally a single
set, of scientograms. However, the alternative operation mode for Subdue
considers two distinct sets, a positive set G, and a negative set G, deter-
mined by the user. In this operation mode, the goal of Subdue is to find
the largest substructures present in the maximum number of graphs in the
positive set, which are not included in the negative set. The MDLi measure
is thus computed as follows:

I(G,) + 1(Gy) 3)
I(S) + I(Gp|S) + I(G,) — I(G,]5)

To determine which map should be positive and which map should be
negative, the user will have to consider a given discriminative criterion. For
instance, if we select the culture as a criterion, the positive set could com-
prise some graphs corresponding to European country scientograms, and the

UCLZU@MDLZ‘(S, Gp7 Gn) =
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negative set some scientograms of Asiatic countries. Another example could
be to consider the scientograms of a given (historical) time period of a coun-
try as a positive set, and the remaining scientograms of the same country as
a negative set. Thanks to this new operation mode, much information can
be extracted automatically from a scientogram DB: the most characterizing
substructures for a given culture, the definition of new specificity and simi-
larity measures between two countries, a set of substructures which illustrate
the commonalities or the differences between the scientific CRCSs of two or
more countries, the study of the evolution of the scientific production of a
country during time, etc. Some of the latter examples will be shown in the
next sections.

3.1.2. Evaluation criterion based on the substructure size

The second evaluation measure is based on the size of the substructures,
the original graph and the graph compressed with the substructures. The size
of an object is not computed from the description length, but from an index
based on either the number of nodes, the number of edges or, more usually,
the sum of the both values. This measure is faster to compute but less
consistent as it does not show the real benefit obtained after the compression
of the DB. It is expressed as follows:

Size(G)
valuesiz(S, G) = Size(S) + Size(G|S) ()

where, usually, Size(G) = #vertices(G) + #edges(G).

In the case of the second operation mode, in which we have a positive
and a negative scientogram set, the Size measure is computed as follows:

B Size(Gp) + Size(Gy)
— Size(S) + Size(G,|S) + Size(G,) — Size(Gn|S)( )
5

valueg;,.(S, G, Gp)

3.1.3. FEvaluation criterion based on the substructure support
The last alternative measure is based on the support of substructure S
and it is expressed as follows:

#graphs in G including S (6)
card(G)

valuesypport(S, G) =
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with card(G) being the cardinal of the set of graphs G composing the DB.

Notice that, this support definition is slightly different from the classical
one used by Subdue, which computes the number of occurrences of S in the
DB graph. In our case, since the DB is composed or a set of scientograms
(i.e., graphs) and the nodes in a scientogram have unique labels (i.e., category
names), a substructure can appear at most once in each scientogram. Hence,
to compute the support of substructure S' it is enough to check if it actually
appears or not in each scientogram in the DB, as expressed by the previous
equation.

For the second operation mode, this evaluation measure is computed as
the sum of the number of positive maps containing S and the number of
negative maps not containing S, divided by the total number of maps. Its
formulation is as follows:

#G), graphs including S + #G,, graphs not incl. S
I _
valusupport(S, Gy Gn) card(G,) + card(G,,)
(7)

The computation of this measure is thus even faster than that of the Size,
but it allows only a raw analysis of the DB.

A basic overview of the application of Subdue in its second operation
mode is shown in Fig. 3. Notice that, the example substructures extracted
from the DB are evaluated using the three existing measures.

3.2. Three specific scientogram analysis and comparison tasks performed through
subgraph mining using Subdue
Having in mind the main components of Subdue, a detailed description of
the followed aim in each of the proposed scientogram analysis and comparison
tasks can now be provided in the next three subsections.

3.2.1. Study of the evolution of the scientific domain of a specific country
over time

As a first illustration of the competence of the Subdue algorithm for sci-
entogram analysis, we will depict its use to understand the evolution of a
scientific domain through time. An information science expert would be in-
terested in knowing which substructures appear in the analyzed domain, at
which time, how big they are, how many they are, where are they located,
and so forth. This will allow him to perform at least two kind of studies.
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List of uncovered substructures ordered by a given evaluation criterion

Structure Q'@

Size (nodes/edges) 2/1 / 3 2/1
Support (positive:negative) 2:0 1:0 1:1
valueppr, 2111 1.727 152
valueg; e 2.111 1.727 152
valuesypport 1 075 05

Figure 3: Basic overview of the application of Subdue when considering positive and
negative graphs in the DB

On the one hand, an in-deep analysis of the uncovered substructures them-
selves, which kind of categories are they linking, etc. On the other hand,
global statistics about the size and the quantity of these substructures to
respectively characterize the importance of the evolution of the domain and
its dynamics. This could be very helpful to perform domain comparison or
domain evolution analysis [65].

Thus, the goal of the first analysis task is to present a framework for
the study of the evolution of a scientific domain over time using Subdue
First, a scientific domain is chosen: in our study, the scientific production
of a whole country is considered. As we want to look for CRCSs which
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were appearing at a given time, we also need to pick two ranges of years, the
negative range and the positive range (see a detailed explanation of Subdue’s
positive/negative examples operation mode in section 3.1.1). The negative
range is usually a set of years from the past, in which these substructures (i.e.
CRCSs) are not meant to exist. The positive range is usually a set of years
dated after the negative range, in which the substructures are meant to be
present. Subdue’s MDLi evaluation criterion will be considered for this aim.
As Subdue will be run to extract the substructures present in the maps of
the positive years but not in the maps of the negative years, it will effectively
uncover the CRCSs that appeared at least once during the positive years.
We should notice that if the positive range is too large, the CRCSs which
appeared and disappeared several times would be also shown. This is why
we will always use small positive ranges.

3.2.2. Identification of the common research categories substructures in the
world

The aim of the second scientogram analysis task is to uncover the CRCSs
in the world by analyzing the scientograms of a large number of different
countries. To detect CRCSs, which is a localized artifact within time, there
is also a need to pick a single year. All the selected maps representing the
scientific production of those countries for that given year will be viewed as
positive examples, so the goal of Subdue will be to extract the substructures
with the best support among all of them. Notice that, no negative examples
are considered in this case. As the user will be specially interested on the
extracted CRCSs to be as specific as possible, the MDLi measure will be
again considered to extract both frequent and large substructures.

3.2.3. Comparison of the scientific domains of different countries

The goal of the last scientogram analysis functionality is to estimate the
specificity of the research developed in a given country with respect to a set
of previously selected countries (i.e., to perform scientogram comparison).
To do so, the scientogram of each country in a given set is compared against
the remaining ones in that set, the current country viewed as a positive map
and the others as negative maps. Apart from the countries list, we also need
to select a specific year. The goal of Subdue is thus to extract the substruc-
tures contained in the single positive map, having the best (smaller) negative
support among all the remainder for the given year in order to highlight the
specific research connections defining that country. This experiment is simi-
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lar to the leave-one-out cross-validation technique, well known in statistical
analysis [18]. Actually, in our case, it should be called the leave-one-in tech-
nique. Note that this experiment could also be done using time periods larger
than a single year, or more than one country in the positive set each time,
thus allowing an expert to extract the substructures highlighting the possible
similarities between these countries (similar to the k-fold cross-validation in
statistical analysis). As the run time of the comparison is a key issue, the Size
measure will be considered to extract both frequent and large substructures
(see section 3.1.2).

The previously described analysis tasks are now detailed in the next sec-
tion as three different case studies.

4. Case study 1: Evolution of a scientific domain over time

Two of the countries listed in Table 1 have been selected for this case
study, Ukraine and United States. The ten scientograms corresponding to
the 1996-2005 period are considered for each country. We have set up the
parameters of Subdue so that it finds the best 300 substructures regarding
their MDLi-based evaluation (see section 3.1.1), and a BeamWidth of 4 to
allow small response times. We performed our tests on an Intel Quad-Core
2.40 GHz CPU with 2 GB of memory, obtaining a computation time inferior
to 3 seconds. In all the following discussions the substructure support is
reported using two numbers (such as 3:4, for instance), with the first number
being the support in the positive set (corresponding to the scientograms in
the positive years), and the second number being the support in the negative
set (corresponding to the scientograms in the negative years). We consider a
substructure having a larger positive support and a smaller negative support
as having a better quality. In the same way, substructures having a larger
size are preferred over smaller ones as they are more specific.

First of all, we will look the Ukrainian scientograms domain with 7 neg-
ative years (between 1996 and 2002) and 3 positive years (between 2003 and
2005). Using Subdue, we have uncovered 300 substructures sizing from 1 to
23 nodes, having a maximum support of 3 in the positive set and a minimum
support of 0 in the negative set (i.e., the best possible values for both sets).

Table 2 shows the global statistics of the substructures found for this
experiment. The substructures have very diverse size, ranging from 1 to 23
nodes and from 0 to 22 edges. Substructures having only one node are the
most common (a 70% of the total). Among them, 3 substructures have a
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Table 2: Support and size of the substructures extracted from the Ukrainian dataset

Support Size (nodes) Size (edges)
(posimeg) #subs. min max avg min max avg
1:1 10 3 8 5.6 2 7 4.6
2:0 6 1 1 1 0 0 0
2:1 2 1 2 1.5 0 1 0.5
2:2 3 1 1 1 0 0 0
2:4 1 1 1 1 0 0 0
3:0 3 1 1 1 0 0 0
3:1 71 1 23 14.63 0 22 13.63
3:2 7 1 5 2.57 0 4 1.57
3:3 11 1 4 1.55 0 3 0.55
3:4 13 1 1 1 0 0 0
3:5 23 1 2 1.04 0 1 0.04
3:6 32 1 2 1.03 0 1 0.03
3:7 118 1 1 1 0 0 0
TOT. 300 4.45 3.45

support of 3:0. These nodes are respectively Leadership and Management,
Philosophy, and Media Technology, indicating the Ukrainian researchers de-
veloped exclusively research in these categories after 2003. On the other
hand, 71 substructures were found with a support of 3:1, among them 5
have the maximal size of 23 nodes. Overall, the most interesting substruc-
tures, those having a null negative support as well as the largest ones, are
not numerous, thus allowing an expert to quickly browse and analyze all of
them.

Andys

Systems
Engineering
Ecology,
Evolgtion,

4 Biotechnoi
Microbiology

Figure 4: One of the substructures uncovered in Ukrainian scientograms during period
2003-2005 (on the left), and its location within the 2005 scientogram (on the right)
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As an example, Fig. 4 shows one of these substructures comprised by
23 nodes and 22 edges, and its location within the full scientogram of the
Ukrainian scientific production in 2005. As can be seen, this substructure is
quite large and appears only during the last three years (actually the negative
support of 1 comes from the fact that it also appears in the scientogram of
1998). This large substructure has in fact two main clusters, Biochemistry
and Physics and Astronomy, suggesting the research focuses on these topics
during the three last years. It occupies the center of the map, where the
backbone of the Ukrainian research is concentrated. Note also that, even if
Biochemistry occupies in general the central part of the scientograms [65],
the fact that it lies in the central part of an extracted common substructure
is irrelevant.

Table 3: Support and size of the substructures extracted from the United States dataset

Support Size (nodes) Size (edges)

(posmeg) #subs. min max avg min max avg
1:2 2 2 3 2.5 1 2 1.5
2:0 8 1 1 1 0 0 0
2:1 32 4 13 9.41 3 12 8.41
3:0 3 1 1 1 0 0 0
3:2 3 1 1 1 0 0 0
3:3 7 4 6 5 3 5 4
34 1 1 1 1 0 0 0
3:7 244 1 4 1.05 0 3 0.05

TOT 300 2.04 1.04

Figure 5: Some substructures uncovered in the United States scientograms during years
2003-2005

We can make a comparison with a totally different country to see what
kind of differences can be observed. Exploring what happens in the United
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States for the same period shows us that significantly more smallest sub-
structures are highlighted. 300 substructures have been extracted, ranging
from 1 to 13 nodes and from 0 to 12 edges, having an average size of 2 nodes
instead of 4.5 nodes as in the Ukrainian case (see Table 3). Three substruc-
tures were obtained with the best maximum support (that is, 3:0), but they
are similar to those observed in the Ukrainian domain, as they have only
one node. Fig. 5 shows more interesting substructures which appear during
period 2003-2005 in the United States, all of them having a support of 2:1
and a size of only 13 nodes. We could presumably assume that differences in
the form of smaller substructures is an evidence of countries having a more
established research track.

The study we conducted did not exactly show the real evolution over the
years as we were limited by the choice of the year ranges, which is made by
the information science expert. In order to have a deeper insight of the data,
we have conducted another study in which this range is not fixed by the user,
but it is defined by moving windows. We start with five negative years and
two positive years, and we add a new positive year and remove the oldest
negative year at each step. Note that the use of a moving window of only
one year size does not generate any substructure due to the fact that there
is not enough data to process.

Table 4: Support and size for some substructures extracted from the United States dataset
using a moving window of two positive years

Year ranges Support Size (nodes)
(negative)  (positive) (posmeg) Finst. min max avg
1996-1999  2000-2001 2:0 3 1 1 1
1996-1999  2000-2001 2:1 1 1 1 1
1996-2000 2001-2002 2:0 3 1 1 1
1996-2000  2001-2002 2:1 55 3 15  8.82
1996-2001  2002-2003 2:1 3 1 1 1
1996-2002  2003-2004 2:0 3 1 1 1
1996-2003  2004-2005 2:0 8 1 1 1
1996-2003  2004-2005 2:1 32 1 11 8.69

As a matter of comparison with the previous study, we will use the United
States dataset to detect smaller changes within the years, using a moving
window of two positive years. Many substructures are extracted following
this approach, but we kept only those corresponding to a support of 2:1 or 2:0,
i.e. the maximal possible support for this experiment. Table 4 presents some
statistics for this experiment. In general, all the uncovered substructures
present a small size, ranging from 1 to 15 nodes but being equal to 1 in a 79%
of the cases. All the substructures having a support of 2:0 are presented in

21



Review and Exal Emergency
Preparation N
Fundamentals Care Planning
and Skills Assessment

and Diagnosis

(2000-2001) (2001-2002)

Review and
Orthodontics References
- i (medical)
B'E’mczsi':'asl;ry Periodontics Kdvanced and
Specialized Oral Surgery

Nursing

Indus'trial [ssues, Ethics:
Relations Research a:: Leg]sal ife-span and
and Theory pect Life-course
Studies

Pharmacology
(nursing)

(2003-2004) (2004-2005)

Figure 6: Some substructures which appear repeatedly between 2000 and 2005 in the
United States scientograms

Fig. 6. These substructures are small as they are composed of only one node.
However, even if they are independent, some relationships could be found
between them. For instance, during period 2001-2002 research areas focused
on care, diagnosis, and emergency appeared. During period 2004-2005, more
research areas focused on medical specialities (orthodontics, periodontics,
oral surgery, pharmacology, etc.) made their apparition.

We should also remark an unusual fact, the high number of instances
obtained considering periods 2001-2002 and 2004-2005 with a support of 2:1.
We respectively obtained 55 and 32 substructures for those periods, two quite
large numbers when compared with the remaining statistics. During these
periods, the research in the United States evolved enough to produce a lot
of changes in the corresponding maps. These concerned categories mainly
belong to the medical domain, such as Emergency Nursing, Care Planning,
Oral Surgery, Orthodontics, etc. Note also that only an automatic approach
can quickly find and highlight those periods with larger changes.

To conclude this first case study, we can say that Subdue is a useful tool to
identify the new CRCSs in a given country and during a given set of years. By
looking into the specific research topics developed from one year to another
one, or even looking at the global statistics, one can figure out some relevant
information about the evolution of research in that country. Notice how the
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extracted substructures are not always located in the scientogram backbone
but in other different parts of the map, thus making the use of Subdue
become a complementary analysis tool to the existing low-level approaches
(see Section 2.2).

5. Case study 2: Common research categories substructures in the
world

The full list of 73 considered countries (see Table 1) was selected for the
current, case study. Since data of their scientific production for year 2005 is
available for all of them, this was the period chosen. 2005 corresponds to
the last year we have in our DB. The parameters we used for Subdue remain
the same than in the previous experiment. On our computer, we obtained a
computation time of 59.39s for this experiment.

Table 5: Support and size of the substructures extracted for the 2005 world CRCSs case
study

Support Size (nodes) Size (edges)
(positive) #subs. min max avg min max avg
10 3 12 12 12 11 11 11
11 1 12 12 12 11 11 11
12 1 11 11 11 10 10 10
13 1 11 11 11 10 10 10
14 4 10 11 105 9 10 95
15 2 10 10 10 9 9 9
16 4 9 9 9 8 8 8
17 1 8 8 8 7 7 7
18 2 8 8 8 7 7 7
19 1 7 7 7 6 6 6
20 2 7 8 7.5 6 7 6.5
23 1 7 7 7 6 6 6
24 1 7 7 7 6 6 [§
28 1 6 6 6 5 5 5
31 1 6 6 6 5 5 5
32 1 6 6 6 5 5 5
38 1 6 6 6 5 5 5
39 1 5 5 5 4 4 4
48 1 5 5 5 4 4 4
50 1 5 5 5 4 4 4
55 2 2 3 2.5 1 2 1.5
58 4 3 5 4 2 4 3
59 1 4 4 4 3 3 3
62 1 2 2 2 1 1 1
68 1 2 2 2 1 1 1
70 1 4 4 4 3 3 3
71 2 3 3 3 2 2 2
73 1 2 2 2 1 1 1
TOT 44 7.0 6.0

Again, 300 substructures have been found, ranging from 1 to 12 nodes and
from 0 to 11 edges (having an average size smaller than 2). For the sake of
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clarity, we removed all the substructures having a single node, only reporting
the remaining ones in Table 5. 44 substructures have thus been kept, with a
size ranging from 2 to 12 nodes (showing an average of 7) and with a support
ranging from 10 to 73. As expected, the higher the support, the smaller the
substructure, and wvice versa. The largest substructures (let say, at least 10
nodes) have a small support, between 10 and 15, which comprises a perfectly
expected behavior as they are more complex. On the opposite, only one
CRCS is found with the best maximum support (73) and it is composed
of two nodes and a single link (Physics and Astronomy (miscellaneous) -
Condensed Matter Physics). In such way, we can conclude the latter is the
most representative CRCS of the research developed in the 73 considered
countries in 2005 as it is the only one existing in every scientogram.

Table 6: Detailed statistics about the CRCSs uncovered in the world scientific domain
case study in 2005

Substructure statistics

Index 20 21 30 31 18 19 25 35 37 38 39 40
Support 15 15 14 14 14 14 13 12 11 10 10 10
Size (nodes) 10 10 10 10 11 11 11 11 12 12 12 12
Size (edges) 9 9 9 9 10 10 10 10 11 11 11 11
Substructure repartition within the countries
Index 20 21 30 31 18 19 25 35 37 38 39 40
Niger YES
Lithuania YES YES YES YES YES
Belgium YES YES YES YES YES
Jordan YES YES YES YES YES
India YES YES YES YES YES
Morocco YES YES YES YES YES
Croatia YES YES YES
Mexico YES YES YES YES YES YES
Austria YES YES YES YES YES YES
Hungary YES YES YES YES YES YES
Slovakia, YES YES YES YES YES YES
Viet Nam YES YES YES YES YES YES YES YES YES
Finland YES YES YES YES YES YES YES YES YES
Ukraine YES YES YES YES YES YES YES YES YES YES
Bulgaria YES YES YES YES YES YES YES YES YES YES YES

Czech Republic  YES YES YES YES YES YES YES YES YES YES YES YES
Algeria YES YES YES YES YES YES YES YES YES YES YES YES

Turkey YES YES YES YES YES YES YES YES YES YES YES YES
Poland YES YES YES YES YES YES YES YES YES YES YES YES
Pakistan YES YES YES YES YES YES YES YES YES YES YES YES

Table 6 collects detailed statistics of the twelve largest CRCSs in the
world scientific research in 2005. As can be seen, all these substructures
concern a relatively small set of countries, only 20 of the 73 countries share
all of them. Three main clusters of countries can also be easily extracted.
Belgium, Jordan, India and Morocco scientograms share substructures #19,
#20, #25, #31, and #35. Mexico, Austria and Hungary scientograms in-
clude substructures #18, #21, #30, #37, #38, and #39. Finally, Czech
Republic, Algeria, Turkey, Poland and Pakistan scientograms contain all the
twelve largest uncovered substructures, while Bulgaria is only missing one
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CRCS (#38) and Ukraine is missing two of them (#35 and #39). Some geo-
graphic proximity can be identified within the countries in this list: Austria
and Hungary; Czech Republic, Bulgaria, Poland, and Ukraine; Morocco and
Algeria; India and Pakistan; and Jordan and Turkey.

We should also remark the specific case of Niger, which only appears in
one of the twelve extracted CRCS (#31). This is an interesting case that de-
serves a specific analysis. Niger’s scientific production in 2005 only comprises
1785 documents distributed in only 27 categories. In this way, it is unlikely
that a common CRCS could be extracted relating the research developed in
this country and in the remainder of the world, although it is not impossible,
as it is the case in our experiment. In view of the available scientific produc-
tion data for the country, there is some chance that, regardless the fact that
it is a low developed country, the government could be applying any kind of
scientific policy trying to mimic the research patterns of the more developed
countries. Nevertheless, the very low number of scientific documents and
categories are not enough to corroborate that supposition. In view of that,
the fact that the scientific structure of a country like Niger shares a CRCS
with other countries seems to be a coincidence, especially having in mind the
fact that the handled structures are a consequence of the authors’ citations.

Figure 7: Some of the largest CRCSs extracted from the world scientific research in 2005:
Left: index: #20, support: 15, size: 10 nodes, 9 edges; Center: index: #25, support: 13,
size: 11 nodes, 10 edges; Right: index: #40, support: 10, size: 12 nodes, 11 edges

The composition of the twelve CRCSs is actually similar as they are
mainly formed by a common group of linked nodes plus some additional spe-
cific ones. The common nodes are Materials Science (miscellaneous); Elec-
tronic, Optical and Magnetic Materials; Condensed Matter Physics; Physics
and Astronomy (miscellaneous); FElectrical and Electronic Engineering; Nu-
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clear and High Energy Physics; Hardware and Architecture; Metals and Al-
loys; and Statistical and Nonlinear Physics. These nodes are all connected
in the same way in every substructure and they form what we can call the
main backbone of the research scientogram of the 73 considered countries in
2005 (i.e., the most complex CRCS in the world research in that year). As
an example, Fig. 7 shows three representative substructures from this group.

Atomic

Magnetic
Materiale

Figure 8: Some medium-sized CRCSs extracted from the world scientific research in 2005:
Left: index: #5, support: 38, size: 6 nodes, 5 edges; Center: index: #9, support: 32, size:
6 nodes, 5 edges; Right: index: #11, support: 31, size: 6 nodes, 5 edges

Some medium-sized substructures are also worth to be analyzed and they
are thus presented in Fig. 8. They only have 6 nodes but a high support of
31, 32, and 38 (more than the half of the considered countries), respectively.
Of course, all of them concern Physics research and include a significant
part of the said “main backbone” CRCS #9 shares four nodes with that
backbone (Electronic, Optical and Magnetic Materials; Condensed Matter
Physics; Physics and Astronomy (miscellaneous); and Nuclear and High En-
erqy Physics), while CRCSs #5 and #11 share five nodes (the latter four plus
Statistical and Nonlinear Physics). Besides, they also show their particular-
ities representing some scientific specializations of the countries containing
the respective CRCS in their scientograms: Atomic and Molecular Physics,
and Optics in CRCS #5; Atomic and Molecular Physics, and Optics, and
Mathematical Physics in CRCS #9; and Surfaces, Coatings and Films in
CRCS #11.

To conclude this second case study, we can say that Subdue allows us
to detect the CRCSs in the entire world in an automatic fashion. The con-
sideration of a larger number of maps combined with the size of these maps
did not slow down the algorithm too much when following an appropriate
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parameterization for BeamWidth (it took around one minute of computa-
tion in the same computer used for the previous experiment). The algorithm
allows us to obtain various statistics, ranging from individually extracted
substructures and averaged node size or support, to global information such
as countries or substructure groups. Such data can help an expert to discover
relationships between world research and information extracted from current
geopolitical sources.

6. Case study 3: Comparison of scientific domains between differ-
ent countries

For this third case study, ten maps of 2005 were selected (see Table 7)
from different parts of the world (4 European countries, 3 Asiatic countries, 1
African country, 1 American country, and 1 Eurasia country). We are expect-
ing to extract substructures highlighting specificities between these countries,
but also common points depending on the part of the world in which they
are located. We have designed the experimental setup in order to test this
hypothesis. To determine the specificity of each country, we will perform a
leave-one-in experiment (see section 3.2.3). To evaluate the similarities be-
tween several countries, we will perform a pair-comparison experiment. They
both are presented in the next two sections.

Table 7: List of the ten countries selected for the scientific domain comparison experiment,
Countries
European Asiatic  Others
France China  Algeria
Italy India Cuba
Poland Japan  Russia
Spain

6.1. Detecting specificities: the leave-one-in experiment

For this experiment, we run Subdue ten times, each time taking one of
the ten selected countries as the single positive map and all the others as
negative maps. The total amount of runtime was 29.3s. Fig. 9 represents
the support and size histograms of the 3000 obtained substructures (300
for each run). In view of the former, the most interesting substructures
uncovered (having the ideal support of 1:0) are not so frequent (only 55, less
than a 2% of the total) although there is a significant number of interesting
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substructures with an 1:1 support (630, around a 21% of the total). The size
histogram (which directly collects the 1138 uncovered substructures which
were globally unique) shows us how every possible single node substructure,
corresponding to the 288 unique SCOPUS-SJR categories, was extracted.
Another important conclusion drawn from this histogram is that most of the
country-specific substructures identified have a significant complexity (6.12
nodes in average), thus being quite informative and justifying the current
experiment.

Figure 9: Support and size histograms of the extracted substructures in the leave-one-in
experiment
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Table 8 reports specific statistics about the group of substructures having
the two most interesting support values for each selected country. In general,
every country has at least one substructure with the ideal 1:0 support. The
only exceptions are China, India, and Poland, which share all their substruc-
tures with at least another (not common) country. All these countries are
around Russia, which could probably explain a local sharing and a common
scientific specificity. In the case of France, Spain, and Russia, the ideal sup-
port substructures (which are unique in the former two countries) correspond
to a single node, i.e. a single specific category for these countries. For all
the remainder, there are more than one substructure with the ideal support
and these substructures are of a larger size in average (seven or more nodes
in five of the seven cases), thus becoming much more informative.

We have focused our study on the most interesting country-specific sub-
structures uncovered, i.e., those having a support of 1:0 or 1:1, and a size
larger than 2 nodes. Fig. 10 shows a graphical representation of this subset,
in which the color of each circle represents the number of extracted sub-
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Table 8: Detailed statistics of the best substructures extracted from the leave-one-in ex-
periment with ten countries in 2005. Those graphically represented in Fig. 11 are marked
with an asterisk

Support Size (nodes) Size (edges)
Country (posmeg)  #subs. mi max avg min  max avg
1:0 28 7 9 (%) 8.32 6 8 7.32
Algeria 1:1 32 3 8 5.5 2 7 4.5
(Others) 240 1 3 1.86 0 2 0.86
1:1 115 1 8 (%) 6.91 0 7 5.91
China 1:2 8 1 4 3.38 0 3 2.38
(Others) 177 1 3 127 0 2 027
1:0 16 8 11 (%) 1031 8 10 9.56
Cuba 1:1 42 2 10 5.95 1 9 4.95
(Others) 242 1 3 175 0 2 075
1:0 1 1 1 1 0 0 0
France 1:1 48 1 14 (%) 854 0 13 7.54
(Others) 251 1 7 1.63 0 6 0.63
Tl 5 1 3(9) 22 0 2 12
India 1:2 101 1 15 1165 0 14 10.65
(Others) 194 1 2 1.17 0 1 0.17
0 6 7 1M 7 6 6 6
Italy 1:1 104 1 7 5.45 0 6 4.45
(Others) 190 1 3 1.34 0 2 0.34
7.0 T 3 309 3 2 2 2
Japan 1:1 49 2 8 6.27 1 7 5.27
(Others) 250 1 4 1.33 0 3 0.33
1:1 134 2 11 (*) 8.81 1 10 7.81
Poland 1:3 1 2 2 2 1 1 1
(Others) 165 1 2 1.08 0 1 0.08
1:0 2 1 1 1 0 0 0
Russian Federation 1:1 70 2 19 (*) 1089 1 18 9.89
(Others) 228 1 2 o0 1 0.11
1:0 1 1 1 1 0 0 0
Spain 1:1 31 1 14 (*) 1039 0 13 9.39
(Others) 268 1 14 278 0 13 1.78

structures (that we could assimilate to a specificity measure) ranging from
4 to 134, and the size of each circle represents the average size of these sub-
structures, ranging from 2.5 to 10.9 nodes. The map also shows clearly that
European countries have the biggest substructures (especially Spain, France,
and Russia), which are mainly located in the center (backbone) of the sci-
entograms, while the smallest ones are associated to India. Besides, Poland
is the country with the largest number of specific substructures while India
has also the smallest number in this indicator.

Fig. 11 shows the largest country-specific substructure for each country.
Substructures of various sizes, with the number of nodes ranging from 3 to 19,
involving diverse thematics are observed. For example, the two largest sub-
structures, from Poland and Russia, deal with Immunology and Microbiology,
two categories usually located in the center of the scientograms. However,
the differences in both scientific domains can be clearly observed. While in
Poland the latter two categories are related to “general Medicine” (Medicine
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Figure 10: Substructure specificity (circle gray scale) and average size (circle size) for each
country in the leave-one-in experiment

(miscellaneous)), in Russia they build a bridge with Genetics, Biochemistry,
and Chemistry, showing a completely different line of research. Besides,
France and Spain share more categories in central parts of their country-
specific substructures, i.e., Physics and Astronomy (miscellaneous), Electri-
cal and Electronic Engineering, Control and Systems FEngineering, Applied
Mathematics, and four other categories related to Chemistry, and thus the
proximity of their scientific domains shows to be larger. Nevertheless, the two
extracted substructures also allow us to identify the different specializations:
while in France it tends towards Biochemistry and Genetics, in Spain the lat-
ter main track of research is related to Computer Science categories. Notice
also the huge difference of the latter two country-specific substructures with
that of Italy, which is focused on Psychology and Psychiatry, regardless the
geographical proximity between the three countries.

Another interesting pair-wise comparison to show the particularities of the
country-specific substructures uncovered is that between Algeria and China.
Notice that, both substructures show Flectrical and Electronic Engineering
in their center and focus on Computer Science topics. However, the cate-
gories inter-relations are completely different. The only common link is that
between the former category and Computer Networks and Communications,
while the other two shared categories, Software and Computer Graphics and
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Computer-aided Design, are related in a different way: direct link to the cen-
tral category in the case of Algeria and indirect link between them in China.
Besides, Japan’s substructure is also related to Computer Science topics, al-
though it is so small (showing the lack of specificity of this country’s scientific
domain). Its main novelty with respect to the latter two countries is the di-
rect link between Software and Control and Systems Engineering, which can
be justified by the large amount of technological research developed in Japan.

Finally, the last two countries, India and Cuba, show very specific sub-
structures in comparison with the remaining countries studied. On the one
hand, the former is related to “Public Health” and Education, although it
shows a very small size, thus showing a possible lack of fully specific research
branches in the country. On the other hand, the most representative Cuba-
specific substructure is quite large and focuses on the domain of “pure and
applied Mathematics”, a very distinguishing research field.

6.2. Detecting similarities: the pair-comparison experiment

The goal of this experiment is to propose and study a measure of similarity
between a couple of countries. We aim that this measure could characterize
the proximity between the scientific domains of two countries by giving a
real-valued score between 0 and 1. That score will depend on the amount
of common substructures uncovered by Subdue for the scientograms of these
countries. We are aware that many measures exist to compute the distance
between two graphs [14], but they are really tricky to introduce. We propose
a new domain-specific measure, directly based on the results obtained by
Subdue in scientogram mining and quicker to compute.

For this experiment, we run Subdue 90 times (less than two seconds
were required for each run), each time taking a different pair of the selected
countries as positive maps. So each run considers only two maps. As the
nodes have unique labels within the same map, the support of substructure
S in a DB composed of a single scientogram N, valuegyppore(S, N), can only
be equal to 0 or 1 (see section 3.1.3). After each run, the following statistic
was computed?:

3Note that this statistic was obtained using the limited set of substructures found
by Subdue with a given set of parameters, and it is not related to a theoretical mea-
sure concerning an unlimited set of substructures. We consider it as a quick-to-compute
approximation of what could be a real distance measure. For instance, the term
card({S|valuesypport (S, X) = 1}) is difficult to compute directly on a large graph.
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distance(X,Y) = 1 — prozimity(X,Y)
_card({S|valuesupport(S, X) = 1 A valuesypport(S,Y) = 1}) (8)
card({S|valuesypport (S, X) = 1 V valuegypport(S,Y) = 1})

where X and Y are the graphs corresponding to the scientograms of the first
and the second country.

In short, we state that the proximity between two countries X and Y
is given by the ratio of the number of substructures present in the intersec-
tion of X and Y (i.e., the number of CRCSs identified), and the number
of substructures present in the union of X and Y (i.e., the total number of
CRCSs identified). Thus, when two countries do not share any CRCSs, the
numerator is equal to 0, as the proximity value, and the distance is maximal
(having value 1). On the opposite, if they share many CRCSs, these two
numbers become equal, the ratio tends to 1, and we can say that these two
countries have a high proximity and a distance close to 0. Notice that, the
prozimity metrict is equivalent to the Jaccard index [30], frequently used in
information retrieval |21, 57|.

The count of every substructure S having a support of 1 in a network N
({S|valuesypport(S, N) = 1 }) could require a high computation time for large
networks. So, we limited the search to substructures having between 2 and
3 nodes. This provided us with an approximation of the distance between
two countries that is far enough for a graphical exploitation of the results.
With these parameters, the total runtime was about 170.83s. Between 214
and 1965 substructures were obtained for each run. The support for each of
them could obviously be either 2:0 or 1:0.

The final result of this experiment is a square matrix of dimension N xN
(1010 in our case), in which each cell corresponds to distance(X,Y), and
where the diagonal is equal to 0 (see Table 9). A graphical representation
can be extracted from this distance matrix in which countries having a larger
proximity value appear close together. This representation can be done us-
ing a two dimensional spring-layout visualization method, for instance the
Kamada-Kawai algorithm (see section 2.1.4). Fig. 12 shows this represen-
tation by setting, for the weight of each link, the cube of the real distance

4This measure verifies the triangular inequality, the non-negativity, the identity of
indiscernible, and the symmetry, and thus it can be considered as a metric.
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Table 9: Distance matrix (symmetric) obtained from the pair-comparison experiment
France Spain Italy Poland China Japan India Russia Algeria Cuba

France - 0.631 0.543 0.683 0.671 0.630 0.703 0.722 0.818  0.790
Spain 0.631 - 0.527  0.672  0.661 0.673 0.682 0.742 0.828  0.801
Italy 0.543  0.527 - 0.616  0.639  0.597 0.648  0.729 0.804  0.788

Poland  0.683 0.672 0.616 - 0.662 0.643 0.676  0.732 0.801  0.791
China  0.671  0.661 0.639  0.662 - 0.550 0.611  0.704 0.794  0.817

Japan  0.630  0.673 0.597 0.643  0.550 -
India 0.703  0.682 0.648 0.676  0.611 0.624 -
Russia  0.722  0.742 0.729 0.732  0.704 0.683 0.737 - 0.854  0.829

Algeria  0.818 0.828 0.804 0.801 0.794 0.810 0.805 0.854 - 0.868
Cuba 0.790 0.801 0.788 0.791 0.817 0.824 0.786 0.829 0.868 =

0.624  0.683 0.810  0.824
0.737 0.805  0.786

Figure 12: A prozimity map: the representation of the distances between the ten countries
used in the pair-comparison experiment

measure value in order to emphasize the distance and the proximity between
the countries, which would not be the case using the distance value directly.
We call this representation a prozimity map.

Even if obtained using only the co-citation matrices, this proximity map
demonstrates very surprising geographical coincidences. Japan and China
appear close together, as well as Poland and Russia, and Spain, France, and
Italy; while Russia and Cuba, or Russia and Algeria are far away from each
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other. Apart from the trivial confirmation of the geographical proximity due
to the evident collaborations between countries which share or at least have
any historical, socio-economical or ideological likeness, other relationships
appear. For instance, [taly appears in the center of the map, close to non-
related countries such as Japan, China, or India. As suggested and demanded
by this map, further analysis should be performed to understand better this
behavior, employing other kind of tools [45, 65].

We should also point out some cons of this representation. Basically,
a larger matrix (e.g., one with a size of 73x73 to extend this study to our
complete database) would make the representation, as well as the drawn con-
clusions, more realistic. However, a so large map would be probably complex
to be drawn in 2D and to be understood, even if no edges are drawn. In-
teractive applets or further simplifications such as the use of an additional
pruning algorithm would be needed for that purpose. Another issue with
this representation is the notion of projected view. Just by considering the
distances in a subgraph composed of three or more nodes, the visualization
would already be wrong since the represented distances would never per-
fectly match the actual ones, as expected when a perfect replication of the
distance matrix is wanted. This is due to the fact that it is impossible in an
n-dimensional space to solve all the geometric constraints to make the Eu-
clidean distance between two points equal to the distance value given in the
matrix. In fact, the Kamada-Kawai algorithm is used to provide a projection
as close as possible to the distance matrix for some countries, but this carries
some side effects for others. In general, only the global idea of the distance
matrix (the shortest and the largest distances) is reflected in the graphical
map.

In a nutshell, and to conclude this case study, we can see that different
protocols can be used to explore different aspects of the same dataset. The
leave-one-in experiment is useful to detect specificities within a set of coun-
tries, while the pair-comparison experiment is useful to detect similarities
between them. For the latter experiment, note that the defined distance
is very simple, easy and fast to compute and gives coherent results with
respect to the geographical proximity between the selected countries. Of
course, other metrics and a deeper analysis of these statistics should be per-
formed, but this gives a first insight of the possibilities provided by the use
of GBDM approaches (in particular, the Subdue algorithm) to analyze and
compare scientific domains.
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7. Conclusion

In this paper, we showed how a GBDM technique can be successfully
applied to the complex task of scientogram analysis and comparison. A
large amount of data (73 countries over 10 years, covering scientograms with
159 135 nodes and 172 081 edges in total) have been processed to extract a
great number of different units of analysis (global statistics, local substruc-
tures, histograms, proximity map, etc.). From the diversity of the results
obtained, as well as from the different ways of applying the methodology
in order to address diverse requests (evolution of a research domain, iden-
tification of world CRCSs, and uncovering of similarities and specificities in
the scientific production of different countries), we can see that the proposed
approach is an efficient and powerful tool which is able to filter, reduce, and
provide a help to analyze such data.

The methodology is scalable and will not suffer if applied to an increased
volume of data. It has been shown that the generation of the graph visualiza-
tions, graph highlights (see Fig. 4), tables and histograms is fully automatic.
Even if only the Subdue algorithm was used in this proposal, the measures
(the MDLi principle, the size, the support, and the distance metric) are
generic and thus other GBDM algorithms can be considered. For these rea-
sons, GBDM can be viewed as a novel scientogram analysis tool developed in
complement to the current state-of-the-art techniques. Its ability to detect
and identify micro-substructures (at the disciplines level) from as many sci-
entograms as wanted, makes it become an essential tool for the comparison
and the study of the evolution of scientific domains.

Probably the most interesting challenge would be the extraction of non
intuitive substructures that will bring a real added value to the experts.
Anyway, the possibilities of GBDM are not only limited to the applications
considered in this paper. It can also be used for the detection of institutions
with similar interests and goals in a given scientific domain or discipline, for
the identification of potential collaborators, either at a personal or an insti-
tutional level, for the study of the scientific collaboration at a institutional
or national level, etc. Our next works will be devoted to the latter issues.
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