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Abstract. In this article, an approach for creating image classification rules
using evolutionary operators is described. Classification rules, discovered by
application of a genetic algorithm on remote sensing data, are able to identify
spectral classes with comparable accuracy to that of a human expert. Genetic
operators and the fitness function are detailed, and then validated for
hyperspectral images (more than 80 spectral bands). Particular attention is
given to mutation operators and their efficiency in the creation of robust
classification rules. In our case studies, the hyperspectral images contain
voluminous, complex and frequently noisy data. The experiments have been
carried out on remote sensing images covering zones of Lagoon of Venice and
the city of Strasburg, France. It has been shown that the evolution-based
process can not only detect and eliminate noisy spectral bands in remote
sensing images but also produce comprehensive and simple rules which can be
also applied to other images.

Keywords : Remote sensing image, classification rules, high resolution image,
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1 Introduction

The design of robust and efficient image classification algorithms is one of the
most important issues addressed by remote sensing image users. For many years, a
great deal of effort has been devoted to generating new classification algorithms and
to refine methods used to classify statistical data sets (Bock, Diday, 1999). At the
time of this writing, relatively few workers in the machine learning community have
considered how classification rules might be genetically discovered from raw and
expertly classified images. In this paper, a new data-driven approach is proposed in
order to discover classification rules using the paradigm of genetic evolution.

The unique source of information is a remote sensing image and its corresponding
classification furnished by an expert. The images have been registered by various
satellites (e.g. SPOT, LANDSAT, DIAS, ROSIS) that use different cameras having
various spectral and spatial resolutions (Weber, 1995). These types of remote sensing
images generally contain huge volumes of data, for instance an image of DAIS
contains 79 bands of each one 2.8 Mbytes. And, sometimes they are very noisy due to
coarse spatial resolution or unfavorable atmospheric conditions at the time the images
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are acquired. In addition, data may be also erroneous due to inexperienced operators
of the measurement devices.

The aim of this research is to detail an evolutionary classification method applied
to remote sensing images. More about evolutionary classifiers can be found in
(DeJong, 1988) and (Ross, Gualtieri et al., 2002). As stated, the approach to discover
classifiers is data-driven because the formulated classification rules are generated
from data and are able to adapt themselves according to this available data,
environment, and the evolution of classes. In remote sensing, the initial population of
classification rules is randomly created from raw images and given classes, and then
evolved by a genetic algorithm until the acceptable classification accuracy is reached.

In remote sensing literature, several classification approaches are presented,
namely:

— pixel-by-pixel, each image pixel is analyzed independently of the others
according to its spectral characteristic (Fjgrtoft, Marthon et al., 1996),

— zone-by-zone, before classification, the pixels are aggregated into zones, the
algorithms detect the borders of the zones, delimit them by their texture, or
their repetitive patterns (Kurita, Otsu, 1993),

— by object, this is the highest level of recognition, the algorithms classify
semantic objects, detect their forms, geometrical properties, spatio-temporal
relations using domain knowledge (Korczak, Louis, 1999).

Our approach uses spectral reflectances; therefore, discovered classification rules
are only able to find spectral classes rather than semantic ones. This spectral
component of class description is essential to well recognize thematic classes. The
approach has been validated using our software environment, called / See You (ICU).
In this software, the object representation is not too sophisticated but it offers a high
degree of freedom in description of symbolic expressions of rules and definition of
genetic operators. The goal was to evaluate the capacity of the genetic approach to
handle problems of over-generalization and over-fit in highly noisy and complex data.
The ICU is a genetic-based classifier, where we have adapted and extended ideas of
learning classifier systems, such as XCS (DelJong, 1988; Wilson, 1999), the s-
classifiers, and “Fuzzy To Classify System” (Rendon, 1997). We have also been
inspired by the works of Riolo (Riolo, 1988) on gratification and penalization, and of
Wilson (Wilson, 1999) on the exploration of the search space.

The paper is structured as follows. The basic concepts of image classification rules
are introduced in Section 2. Section 3 details the discovery process of the
classification rules. In this Section, the behavior of genetic algorithm functions is
explained. Finally, two case studies on real remote sensing data are presented in
Section 4.

2 Concept of classification rule extracted from remote sensing
images

In general, classification rules are symbolic expressions and describe conditions to
be held and actions to be taken if the conditions are satisfied. It must be underlined
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that in our approach the rules are discovered by an evolutionary process and are not
given a priori by a domain expert.

From a functional point of view, a rule represents a piece of knowledge about a
class by a conditional expression, such as if <conditions> then <class>. The
“conditions” part described an entry information in the system such as value, color,
form, shape, etc, corresponding to conditions that must be fulfilled in order to activate
this rule. The “class” part defines the class of the instance currently treated by the rule
when the appropriate conditions were satisfied. We assert that the evolved rules must
be rapidly evaluated and easy to interpret by any user. As a result, condition
representation using the concept of an interval could be fully adequate for remote
sensing image classification. In terms of machine learning, the rules have to be
maximally discriminant generalizations, meaning that they have to cover the
maximum pixels belonging to a given class and the minimum pixels belonging to
another classes.

Before rule specification, recall that a pixel is encoded as a spectral vector,
describing values of reflectance for the » bands of the remote sensing image, i.e. a
pixel can be considered as a point in a R” space :

<pixel> = [b[ bz b3 b,,] (1)

In our system, the condition for any rule is built on the concept of spectral
intervals defining a given band, corresponding to a given class. Such intervals are a
pair of integer numbers, between 0 and the maximum possible value for a pixel of a
given band (i.e. 65536 for pixels defined on 16 bits). This solution allows to partition
the space of the spectral values in two ranges: the first containing the pixel values
which corresponds to a given class, and the second containing the remainder.

To precisely specify the class definition, a set of intervals is defined for each band
of the remote sensing image. Taking into consideration all bands, the condition part is
defined as a set of hyper-rectangles in a R” space :

n k . .
<condition>:= N\ V (mi] SbiSMi] ) 2
i=1 j=1

where mlj and Mij are, respectively, the minimal and maximum reflectance values

allowed for a pixel belonging to a class C for the band i. & is a parameter which

defines the maximum number of disjunctions allowed.

These intervals are not necessarily disjunctive. By experiments, we have found
that if we allow the genetic algorithm to create non-disjunctive intervals, instead of
merging them, the results of genetic operators are more interesting. We have also
noticed that merging intervals significantly diminishes the number of intervals, and in
the same time, reduces the possibilities to create more efficient rules. To illustrates
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the concept of interval merging, £ = [11; 105] Vv [138; 209] v [93; 208]
corresponds after merge operation to £ = [11; 209].

To satisfy a rule, a pixel has to match at least one spectral interval for each band.
Logically speaking, to associate a pixel to a class, its values have to satisfy the
conjunction of disjunctions of intervals that define a condition part of the
classification rule.

This representation of the rule has been chosen mainly because of its simplicity,
compactness and uniform encoding of spectral constraints. During experimentation,
this representation has also demonstrated rapid execution of genetic operators and
efficient computing. Of course, one may specify more complex structures using
spatial properties of the pixel, with respect to the pixel neighborhood. Also, one may
include features resulting from thematic indices or mathematical operators applied to
pixel environment. These semantically extensions are interesting, however they not
only require more sophisticated genetic operators, but also more powerful computers
to perform the calculation in an acceptable amount of time.

3  From the rule creation to the evolution

3.1  Genetic algorithm

In order to efficiently develop the classification rules, a genetic algorithm
initializes interval values according to spectral limits of the classes designated by an
expert, for valid zones of the remote sensing image. Initial classification rules are
created based on the extreme maximum and minimum values for defined spectral
intervals of each class. It should be noted that by this initialization, rule searching is
considerably reduced, and initial intervals are very close to the final solution. More
about initialization algorithms can be found in (Kallel, Schoenauer, 1997). During the
process of evolution, the initial spectral limits are slightly perturbed by adding a
random value to lower and upper spectral limits. Hence, the initial population of
classification rules is quite diversified.

A Michigan-like approach is used to discover independently a classification rule
for each class. A major reason for choosing this approach is the efficiency of
computations; that is, the process of rule discovery is not perturbed by other rules.

The quality of classification rules is based on a comparison of these results with
the image classified by an expert. If pixels covered by the rule perfectly overlap those
indicated by an expert, then the system assigns the highest quality value to the rule;
otherwise, in the case of some mismatching, the quality factor is reduced (between O
and 1). An associated fitness function will be detailed in the next section. During the
evolution process, the rules are selected according to the quality for a given class. It
should be noted that it is also possible to define global system quality based on rule
classification qualities. The process of rule evolution is defined in the algorithm
below.
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Algorithm 1. Process of rule discovery.

R is a classification rule and P, P’ and P” populations of classification rules.

R: = INITIAL_RULE (images) //Creation of rule according to spectral extremes
P: = INITIALIZATION (R) // Random perturbation of rules
EVALUATION (P) // Calculation of the fitness function for each rule
do while TERMINATION_CRITERION (P) = false

P’ : = SELECTION_X(P) // Selection for crossover

P’ : = CROSSOVER(P’) U COPY (P)

P’’ : = SELECTION_MUT(P') // Selection for mutation

P’’ : = MUTATION(P’’) U COPY (P')

EVALUATION (P’ ')

P: = REPLACEMENT (P,P’") // New generation of rules

end_while
Result: A print of the classification rule R for a given class, statistics and quality
measures for the discovered rule.

As mentioned before, this algorithm must be designed to run independently for
each class. This allows for obtaining rules according to user requirements without the
necessity of carrying out computations for all classes with the same level of quality.
This also allows to preserve the previously generated rules, as well as to introduce of
new ones. Further, the user may define a hierarchy of classes and specialize some
rules while respecting newly created sub-classes with different levels of classification
quality.

3.2 The evaluation function

The evaluation function serves to differentiate the quality of generated rules and
guide genetic evolution. Usually, this function depends strongly on application
domain. In our work, we define a pixel that the rule classifies as being in the class
when the expert classifies the pixel as in the class as a true positive. Conversely, we
define a pixel that the rule classifies as being not in the class when the expert
classifies the pixel as not in the class as a true negative. Other pixels are said to be
correctly classified.

We normally use as a quality measure the proportion of pixels that are correctly
classified by the rule. In some cases, when classes are under- or over-represented, we
care more about one misclassification than another. In these cases, we use

a.ppH1—).pm as a quality measure, where ppis the proportion of true positive

pixel classifications by the rule (called sensitivity), pmis the corresponding proportion

of true negatives (called specificity), and @ is a parameter that lets us adjust the
relative weight given to true positives and false negatives. By default the value of the
coefficient & is fixed to V2.

The proposed function shows a number of advantages; it is independent of the
pixel processing sequence, invariant of the size of classes, and efficient for class
discovery with a highly variable number of pixels.
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The evolution process converges according to some statistical criteria indicating if
the current rule is near to a global optimum or if the population of rules will not
evolve anymore. The termination criterion of the algorithm leans on the statistics of
rule quality evolution. In our system, we take into consideration not only the
evolution of quality of the best discovered rule, but also the minimum acceptable
quality defined by a user, the process stability measure and a maximal number of
generations to run. If one of these criteria is satisfied, then the process is stopped.

The most difficult question is whether the quality of a rule is not continuing to
evolve. To detect stabilization of the quality evolution, instead of taking into account
the best rule generated recently we have based our heuristics on statistics regarding
quality evolution of the best discovered rules in a time. For example, let Oy be the
quality of the best rule obtained during the last k& generation, and Q, be the quality of
the best rule of the current generation. Formally, the algorithm is stopped if the
following equation is satisfied:

»
YO
—k:}) —O<E (3)

where P represents the maximum period of quality stabilization, and £ is a maximal
variation of this stabilization compared with the current quality.

It is important to have an initial population of rules within the vicinity of the
solution to be found. We have proposed two algorithms allowing for the generation of
a diversified pool of rules close to the expert hidden classification rule. The first,
called MinMax, creates maximum intervals covering all the pixels belonging to a
given class, and the second algorithm, called Spectro, integrates the spectral
distribution density and interval partitioning.

With respect to software engineering, the genetic algorithm has been structured
into layers corresponding to consecutive genetic operations (e.g. selection, mutation,
crossover and replacement). This modular approach makes the program maintenance
and future extensions much easier.

3.3  Genetic operators

One of the most important tasks while designing a genetic algorithm is to invent
operators that will create new potential solutions. All of our operators have been
adapted to the rule representation, and they have been validated on remote sensing
images.
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Selection of classification rules. In general, selection is the operation of allocating
reproductive opportunities to each rule. The reproductive force of a rule is expressed
by a fitness function that measures relative quality of a rule by comparing it to other
rules in the population. There are many methods for selecting a rule (Blickle, Thiele,
1995). In our system, the selection operator is applied in the following cases:

—  choosing the rule to be reproduced for crossing, or muting;

— repetition of the rule, depending on whether it completes the genetic pool

after having completed the crossover;

—  preservation of a rule from the former genetic pool for the next generation;

— elimination of a rule in a newly created genetic pool based on an assigned

rank.

Selection methods are well known: the roulette wheel, ranking, elitism, random
selection, the so-called tournament, and eugenic selection. Our experiments have
shown that roulette wheel selection is most advantageous for the reproductive phase,
but the tournament strategy with elitism is best for the generational replacement
scheme.

Crossover of rules. Crossover requires two rules, and cuts their chromosomes at
some randomly chosen positions to produce two offspring. The two new rules inherit
some rule conditions from each parent rules. A crossover operator is used in order to
exploit the qualities of already generated classifiers. Each result of the crossover
process has to be validated. Consistency of the various rule attributes (border limits
violation, over-passing, etc) is carried out respecting the intervals boundaries.
However, merging not only decreases the number of intervals in the rules, but also
generates some information loss. In fact, in order to avoid a premature convergence of
rules, it is generally important to preserve for the following generation two distinct
intervals instead of a single aggregated one. On the other hand, it is also interesting to
note that the positive or negative effects of an interval on the quality of the rule can be
related to other intervals encoded in the classification rule.

Mutation of rules. The mutation operator plays a dual role in the system: it provides
and maintains diversity in a population of rules, and it can work as a search operator
in its own right. The mutation processes a single classification rule and it creates
another rule with altered condition structure or variables. The mutation operator for
several may be applied on three levels: band level, interval level and border level.
Figure 1 shows the different variants of mutation as applied to remote sensing images.

Band mutation consists of a deletion of spectral bandwidth in a chosen
classification rule. Its interest is twofold; firstly, the band mutation allows to simplify
and generalize a rule; secondly, it allows to eliminate of noisy bands that frequently
appear in hyper spectral images. The existence of noisy bands significantly perturbs
the learning process, as well as the process of evolution convergence.

Interval mutation allows for a chosen band to add, eliminate or cut an interval in
two spectral ranges. In case of addition, the new rule is completed by a new interval
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centered randomly with a user-defined spectral width. The cutting of an interval is
done by random selection of a cutting point within the interval (for example, the
cutting of /10;100] can generate two intervals: [10,15] and [16;100]). Interval
mutation such as this allows splitting of continuous spectral ranges. And, this allows
for the definition of a spectral tube in which spectral values of the pixels belong to a
given class.

Mutation

N

Band Interval

Border

Add Suppress Change [A;B]

Suppress Cut AorB Aand B

Fig. 1. Mutation operators

Finally, border mutation modifies both boundaries of an interval. This mutation
refines the idea of targeting spectral tubes carried out by the other types of mutation.
It is worthwhile to note that the mutated rules are systematically validated.

In our system, mutation operators are dynamically adapted. Adjustment is related
to the probability of each mutation operator according to its current efficiency.
Another schemes of mutation can be easily implemented, for instance self-adaptive
mutations proposed by (Anglano et al., 1998; Thomsen, Krink, 2002).

Generational replacement. The generational replacement is an operation that
determines which of the classifiers in the current population is to be replaced by
newly discovered children. According to Algorithm 1, the new generation of rules is
created from a population of parents (P) and their children after the crossover and the
mutation operations (P”). In our system, the following replacement strategies are
applied:

— the revolutionary strategy in which only the population of the children
completely replaces the parent population (P),

— the steady-state strategy in which new children are inserted in the new
population by replacing the worst, or the oldest rule, or the most similar
rules, or by preserving the best rules (elitism).

There exist other replacement strategies integrating, for instance, the strategy

where the best rule of the previous population replaces the worst one of the current
population or the strategy where the new classifiers having a performance higher than
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a certain threshold are inserted. However, both these strategies present the risk of
having classifiers remain in the population, which is not necessarily a problem except
in the case of a weak genetic pool in which some classifiers of average performances
that would profit from immunity.

4 Case studies and experiments

In this paper, two case studies involving the remote sensing images of Strasbourg
and San Felice (Lagoon of Venice) have been chosen. These cases contain
hyperspectral data (DAIS 79 bands and ROSIS 80 bands, respectively), with 16 bits
per pixel and 3m terrain resolution (Wooding, 2001; Quirin, 2002). The first case
study considers a typical problem of classification for urban zones including a high
percentage of mixed pixels. The second case demonstrates the performance of rules
on very noisy images with closed spectral classes (mostly vegetation classes).
Learning was carried out on the lower half of the image (932*184 pixels), and then
validation was performed on the whole image (932*368 pixels).

To well understand the formalism of rule representation, let B; be the reflectance
value for the band i of the considered pixel. For instance, the conditional portion of
the rule that classifies the instances of a Limonium Narbonense class is given below:

(0 < By < 65535)

A (461 < B <1928)
AN L
(0 < B < 65535)

>

((522 < By £1895) v (6541 < B <39307))

> > > >

(364 < Byg < 2107)

It is easy to notice that the band By and Bs are too noisy (range maximum), and
they can be eliminated from the condition. The rules simplification may be also
implemented indirectly in the rule evaluation function, promoting the rule simplicity.
It should be also noted that after preliminary tests, this method generated many over-
generalized rules with relatively weaker performance than that obtained by the simple
deletion.

In the following part, the main results of evolutionary data mining are described.
Each case study is illustrated by a classified image using the discovered rules,
discussions and performance measures.
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Image of Strasbourg, Stadium Vauban (hyperspectral image, 80 bands)

Table 1. Parameters of the GA

Parameter Value
Population 1500 rules
Generations 250
Stabilization length 20
Stabilization error 10*
Crossover rate 80%
Mutation rate 5%
Rate of eugenic sel. 1%
CPU time (P4 2.5GHz) 16 h
Learned classes 11
Performance 86,06 %

Comments. This complex remote sensing image contains more than 50% noisy
bands. Moreover, Water data is represented by many small, corrugated lines (signal
has been scrambled by atmospheric conditions) so Water and Shadow spectral signals
are very similar. Therefore, a small spot of Water appears in the middle of the city,
instead of Shadow. The average quality of the best rule for each class is about 86%,
which is relatively good performance.

Image of Venice, Lagoon San Felice (multispectral image, 4 bands)

Table 2. Parameters of the GA

'y *

- Parameter Value

e ‘ Population 500 rules

™ ™ Generations 500

Ta Stabilization length 10

Stabilization error 10°*
Crossover rate 75%
Mutation rate 15%
Rate of eugenic sel. 1%
CPU time (P4 2.5GHz) 2h
Learned classes 5
Performance 89,03 %

Fig. 4. Classified image

Comments. Fig. 3 presents a typical classified image by an expert using ground
truth data. As illustrated the number of classified pixels (shown in color zones) is very
low (1.43%). Note that in the whole image only 10 pixels were identified as the Water
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class. In spite of the small training set and the large space of search (spectral value of
pixels is represented by 32 bits), the discovered set of rules is able to produce a
coherent classified image.

Resistance to the noise of the learning process. The resistance of the classifier
system to the noise has been evaluated numerically. Fig. 5 illustrates the protocol
used for validation. (Datar,Expert;) are the training data and (Datar,Expr) are the
validation data. These sets are of the same size and are generated by taking for each
one the half of the pixels of the whole image. Noise(image,rate) is a function which
perturbs rate% pixels. Valid() is a function which generates the weighted performance
of classifiers, according to the discovered rules (Rules) and an expert classification
(Expert) of the remote sensing image (Data). Cycle(rd,re) computes the performance
of the rules learned from a rd% perturbed data and a re% perturbed expert image. The
curves below, Cuua=Cycle([0;50],0) and Cexper=Cycle(0,{0;50]) illustrate the
weighted performance of the rules on the noisy training set.

I=
o
o

Cycle (nd, ne)
NoRules=50
NoGenerations=50

‘ — Cdata ~ ------- Cexpert

=)
i

Sampling of data=10%
Rules=Learning (

=
oo
{”’l

Ferformance ofthe final best rule
%
it

Noise (Data, , rd),

o
~
o

Noise (Expert, , re))

Perf=Valid (Data, Experty,Rules)

=
g

return Perf 0 10 20
EndCycle

a0 40 50
Percentage of perturbed pixels

Fig. 5. The validation protocol and the resulting graph

We performed 11 runs for each test (perturbation of the data or the expert image).
Standard deviations of the rule performances are : OcCuiw = 0,042 and OCexperr = 0,026.
The two case studies have demonstrated the high capacity of the evolution-based rules
to interpret and classify heterogeneous and complex images (e.g. high dimension,
large number of bands and noisy data that provide a computational complexity of
O(n’), which is quite heavy for a deterministic algorithm). The quality of
classification is very high even if there were a high number of noisy bands and mixed
pixels. It must be noted that the quality of learning is highly related to the quality of
the classified image used for rule discovery. The discovered classification rules are
simple and easy to interpret by remote sensing experts. They are also mutually
exclusive and maximally specific. The learning time was relatively long due to the
large image size and the chosen parameters for the evolution process, but the
computing time optimization was not addressed in these experiments.

During the experiments it was observed that the best rules use 0% mutation of
bands, 5% mutation of intervals, 41% mutation of borders, and 53% crossovers. In
spite of weak mutation rate (5-15%), mutation operators have demonstrated high
efficacy. The diagram shows that this evolutionary process is able to admit nearly 5%
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of noise on the data or the expert image without significant loss of quality. We have
observed that by adding more than 5% of noise, the rule quality does not clearly
decrease. Rule generalization quality has also been evaluated and it is worthwhile to
mention that the best set of rules on high-resolution images can be applied on a 23-
times larger image with a loss of quality less than 0.02%.

Finally, high correlation was observed between obtained results and statistics
carried out on the remote sensing image (spectrogram statistics, excluding noisy
bands). Classified images by the discovered rules have shown that the evolution-
based process is able to faithfully reproduce the human expertise.

5 Conclusions and perspectives

This article has described an evolution-based method applied to remote sensing
images. The system has discovered a set of if ... then image classification rules using
the fitness function based on class recognition quality. These rules, which were
proven robust and simple to understand for the user, improve the accuracy of
classifications proposed by the expert, and are sufficiently generic for reusing them
on other portions of remote sensing images.

Taking into consideration image complexity and noisy data, the results of our
experiments are very encouraging. Case studies have demonstrated that the obtained
rules are able to reproduce faithfully the terrain reality.

The rules are well adapted to recognize large objects on the image (e.g. sport
lands), as well as the smaller ones (e.g. trees, shadows, edges of the buildings). The
redundant or noisy bands have been successfully identified by our rule representation.
The formulation of rule representation has allowed for the modeling of a spectral tube
adapted to the granularity of spectral reflectance. The proposed rules initialization
seems to be well suited to large volume of data. It has considerably reduced the search
space by generating initial rules close to the final solution.

The genetic system developed in this research work, called ICU, is currently
available on our web site http://lsiit.u-strasbg.fr/afd. A new version of
ICU is under development, including a more powerful representation of rules
including spatial knowledge, temporal relations, hierarchical representation of
objects, and new genetic operators.
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